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A flexible culvert depends primarily on the surrounding

soil for support, and the structural stresses and deflections are

controlled by the interaction between the structure and the back-

fill. The finite element method Is capable of simulating many of

the factors which control the interaction between culvert struc-

tures and the surrounding soil. It can be used as a research tool

to provide a basis for more effective and efficient simple design

methods.

For the finite element method to produce useful results in

analysing the buried culvert problem, a correct analytical model

Is required which, In turn, means a correct model of material pro-

perties is essential. The objective of this study is to investi-

gate the suitability of the hyperbolic and Lade's constitutive

relations In this buried, flexible culvert problem by comparing

analytical results with centrifuge model test results.

Two series of centrifugal model tests of buried culverts

under symmetrical and unsymmetrical ground surface loadings were

conducted. The deflections of the culvert and the strains in the

culvert induced during loading were measured.
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The soil used in the centrifugal model was tested in con-

ventional experiments to obtain the data base for the calibration

of the hyperbolic and Lade's constitutive relations. An analyti-

cal model utilizing the finite element method with 4-node isopara-

metric element was developed to simulate the construction process

and the gravitational field of the centrifugal model. The two

calibrated constitutive relations for soil were implemented into

the analytical model. A convergence study showed that the analy-

tical model was correctly constructed.

The results obtained from the analytical model were com-

pared with those from the centrifugal tests. It was found that

both the hyperbolic and Lade's constitutive relations for soil

showed qualitatively good results but not quantitatively, because

the soil used in the centrifugal model exhibited strong stress

induced anisotropy due to the layer compaction method used in pre-

paring the centrifuge model. only an anisotropic soil model with

the ability to account for the rotation of the principal stresses

will offer an accurate solution for the problem of a flexible

culvert buried in a layered backfill.
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CHAPTER I

INTRODUCTION

1.1 Introduction

The complex problem of the reaction of a buried culvert to

loads applied at the ground surface is studied using physical

modeling in a geotechnical centrifuge. The concept of using a

high gravity field to simulate body forces in reduced scale models

was first suggested by James Watt during the steam engine age. In

the early 1930's Bucky used the method to study models of under-

ground openings in mining operations. In the last decade centri-

fugal modeling has been applied to many complicated engineering

problems like excavation, reinforced embankment, soil slope stabi-

lity. offshore gravity structure, offshore suction anchors, sedi-

mentation, consolidation, pile driving, and buried culvert.

What makes centrifugal modeling so valuable to the

understanding and solution of geotechnical problems is that data

can be generated on the soil structure's behavior under stress

conditions close to those experienced by the prototype. Soil is

the most difficult engineering material to deal with due to Its

nonlinear, time-dependent and inelastic behavior. The increased
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body forces in the centrifuge can correctly capture the initial

stress state of earth structures for which self-weight is the main

source of load.

There are mainly two schemes of utilization in centrifugal

modeling. First, a model test structure is geometrically similar

to the prototype and is constructed of the prototype material, so

that the test results can be interpreted through scaling relations

to represent the prototype response. In order to get the correct

response, the geology of the prototype site, the construction

details of the structure, and the stress history of soil material

have to be faithfully duplicated in the centrifuge model. This

will give the designer an opportunity for observing unexpected

phenomena and failure modes of the structure to benefit the design

purpose. Second. the data collected by centrifuge testing under

controlled laboratory conditions are used as the basis for

calibrating numerical models in which a major input component is

the constitutive properties of the soil. In this scheme of

centrifuge utilization there is no specific prototype to be simu-

lated and as a result the construction of the test model can be

considerably simplified. This philosophy is adopted for the

research described in this dissertation.
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1.2 Statement of Problem

1.2.1 Culvert

A culvert can be classified as being either rigid or flex-

Ible and the design methods used for each type are accordingly

different. The meaning of the words "rigid" and "flexible" is

rather relative than absolute, depending on the relative stiffness

between the culvert and the surrounding soil. In general there

are two types of definition based on the material and the failure

mode of the culvert.

The term "rigid" is used for culverts made of concrete.

reinforced concrete and cast iron, and the term "flexible" is

applied to culverts made of plastic, corrugated metal plate, and

steel plate. However, as far as the failure mode is concerned, a

rigid culvert will normally fail by bending of the culvert wall,

and a flexible culvert by buckling (Allgood et al., 1968, Luscher

1966, Whitman et al., 1962). Since the failure mode of the

culvert is controlled by the geometry and the properties of soil

and culvert, the latter definition is more rational.

Figure 1.1 illustrates a circular culvert cross-section

with commonly defined areas identified. The crown and the invert

are the top and the bottom of the pipe, respectively. The spring-

line is an imaginary line connecting left and right extremities.

The shoulder is located between the crown and springline, and the

haunch resides between the invert and springline.
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In the plane strain case the hoop stiffness can be

expressed as EA/R(l-VI), and the bending stiffness can be repre-

sented by EI/Rz(1-0). where I is the moment of inertia of wall

per unit length, A Is the thrust area of wall, E Is Young's modu-

lus, R is the radius of the culvert, and V is Poisson's ratio.

In general the bending stiffness is substantially less

than hoop stiffness. Consequently, the culvert displacement is

primarily contributed by the bending mode as opposed to the hoop

compression. This illustrates the importance of correct evalua-

tion of stresses which are acting in the culvert.

1.2.2 Culvert-Soil System

There are three important aspects of the interaction bet-

ween a flexible culvert and the surrounding soil, i.e., defor-

mation restraint, stress redistribution, and arching. Because of

this interaction the load-carrying capacity of the culvert-soil

system exceeds far beyond the individual capacity of each com-

ponent.

Deformation restraint provided by the surrounding soil

increases the resistance of the culvert against buckling, because

the restraint forces the culvert to buckle in higher modes. The

more dense and stiff the soil is around the culvert, the more

effective the deformation restraint.

-- N mms~mmmmn M m a.
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Stress redistribution is the fact that the stresses around

the springline of a culvert will increase above the at-rest value.

When the culvert deflects under the vertical load at the surface,

the side of the culvert was pushed against the adjacent soil, and

the contact stresses increase. This was proved by Hoeg (1968) and

Howard (1972). They found the side contact stresses against the

thin flexible pipe increased with increasing flexibility of the

pipe In both cohesionless and cohesive soils.

Arching is the action by which the contact stress around

the crown is reduced when the culvert deflects inwardly at the

crown. Rigid culverts have larger stiffnesses than the soil

stiffness and induce negative arching. On the other hand, flexi-

ble culverts generally triggered positive arching. Qualitatively,

positive arching is enhanced as the soil stiffness is increased

and/or culvert stiffness is decreased. These were confirmed by

Hoeg (1968) and Howard (1972).

1.3 Literature Review

1.3.1 Classical Methods

Currently used design methods for buried culvert are

mainly based on the work done at Iowa State University by Marston

(1922, 1930) and Spangler (1926, 1941) about sixty years ago. For

circular flexible pipes two design criteria have been commonly

used.
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First is the Iowa Formula (Spangler, 1941) In which the

change in the horizontal diameter of the flexible tube Is evalu-

ated as follows:

AX = KWcr3  (1.1)

I El + 0.061 Es r
3

where

AX = the change of horizontal diameter,

D1 = deflection lag factor,

Wc - effective vertical load acting on the pipe from
Marston's estimation.

K = bedding constant,

r = mean radius of the pipe,

E = modulus of the pipe material,

I = moment of inertia,

Es = modulus of the soil.

Design is achieved by adjusting the pipe's in-plane bending stiff-

ness to contain the deflection within 5% of the diameter. The

accuracy of the Iowa Formula is tied to the proper selection of

those empirical parameters. The soil modulus is the most contro-

versial one since it varies with so many factors, like confining

pressure, soil density and strain rate, etc.

Second is the ring compression theory which was proposed

by White and Layer (1960) who assumed that the wall thrust is

equal to the weight of the soil column above the culvert.

T - yHr (1.2)
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where

T = wall thrust,

I - unit weight of soil,

H = distance from the top of the pipe to the surface of
the fill,

r = mean radius of the tube.

The design procedure Is to adjust the wall area so that the hoop

stress is under the ultimate seam strength or yield stress reduced

by a safety factor.

Since the 1960's many researchers based the design of

flexible culverts on elastic buckling. These works were discussed

in detail by Leonards and Stetkar (1978).

Generally speaking, the Iowa Formula, ring compression

theory, and buckling theory are used for the design of flexible

culverts. In these methods the magnitude of the vertical load or

horizontal load on the culvert is assumed instead of the real load

distribution. These assumptions made many parameters in the above

theories or formulas so empirical that the use of these methods is

seriously limited and their applicability to a special problem Is

almost impossible.

1.3.2 Exact Solution Methods

By considering the soil as a continuum and the culvert as

a shell, the soil-culvert system can be treated as a boundary

value problem. If linear elasticity is assumed for the soil and
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the linear elastic shell or ring theory is used for the culvert

then an exact solution can be found for this kind of boundary

value problem. Malishev (1965), Savin (1961), Hoeg (1966), Burns

(1964), and Dar and Bates (1974) all presented solutions of this

kind.

The solution by Burns provides a closed form solution of

linearly elastic, circular cylinder embedded in a linearly

elastic, isotropic, homogeneous, and weightless medium under plane

strain conditions. Uniformly distributed vertical and horizontal,

loads were applied on the boundaries. Free slippage and no slip-

page are the only options for the interface between the soil and

the culvert. Although these solutions offer an assessment of the

problem of soil-structure interaction, those very idealized

assumptions make this method unsuitable for accounting for the

irregular geometric shape, nonhomogeneity, nonlinear material

properties and construction process. So their satisfactory appli-

cation is still limited to a few highly specialized situations.

1.3.3 Finite Element Methods

The finite element method has received much attention in

the field of soil-culvert interaction since the mid 1960's. There

are several advantages of this numerical method over classical

methods and exact solution methods, namely, (1) the ability to

represent the complex nonlinear behavior of the soil and the

structure; (2) the ability to represent the nonhomogeneous back-

fill conditions; (3) the ability to simulate the actual sequence
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of construction operations; (4) the ability to output the dis-

placements. strains and stresses of the soil and culvert at any

stage for design or analysis purposes; and (5) the ability to

illustrate the effect of different parameters.

Brown et al., (1968) studied the behavior of a flexible

culvert under 80 foot high hills with the finite element method in

which constant strain triangular element is used to model the soil

medium. The culvert member is represented by three overlapping

triangular elements, whose stiffness matrices are assembled suit-

ably so that the transformed stiffness matches exactly that of the

curved member. The linear elastic and Isotropic material property

law is used for both soil and culvert elements. The effect on the

normal pressure distribution on the culvert is studied under dif-

ferent conditions, like interface, culvert flexibility, and hay

replacement. By comparing the analytical solutions with the field

measurements the finite element prediction on the magnitude and

distribution of normal pressure is found to be fairly good. Brown

performed similar analyses on the rigid culvert (1967).

Doderer (1970) studied soil-culvert problems with the

finite element method in which both soil and culvert were modeled

by linear elasticity and constant strain triangular elements. He

found that although the stresses and strains in the soil could be

predicted satisfactorily, the constant strain triangular element

could not predict the stresses In the culvert.

II



11

Duncan and Clough (1971) presented the finite element ana-

lyses of Port Allen Lock. The soil and the concrete culvert were

represented by linear strain quadrilateral elements. Stress-

dependent stress-strain behavior developed by Duncan and Chang

(1970) was used to model the soil. The concrete culvert was

treated as linear elastic, elasticity. One-dimensional elements

were employed to represent the interface between soil and

concrete. The Incremental finite element analyses were performed

by simulating each of the actual construction operations: Ko

initial condition, excavation, dewatering, placement of concrete

and backfill, re-establishment of normal groundwater conditions,

and filling of the lock with water. The observed rebounds during

excavation, settlement during construction, earth pressures, and

structural deflections agree closely with the calculated values.

They also found that the finite element method with linear elastic

soil behavior and simple "gravity turn-on" loading gave a poor

match. Therefore, the finite element method with nonlinear mate-

rial property and simulated construction sequence procedure Is a

very promising tool to analyze the complex soil-structure interac-

tion problem.

Duns and Butterfield (1970) performed a series of tests on

a 6 Inch diameter, mild-steel cylindrical pipe instrumented with

strain gauges and buried in the uniform fine sand. The axial

thrust and bending moment of the cylinder were calculated from the

measurements and were compared with the results from finite ele-

ment analyses in which constant strain triangular elements were
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used to approximate the soil medium and the straight beam elements

were used to represent the cylinder. The stiffness matrix for

each beam element was evaluated from the slope deflection formula-

tion and then the rotational degrees of freedom were condensed

before It was assembled into the system stiffness matrix. Full

bond at the interface was assumed. The material model was linear

elastic and the loading consisted of a uniform surface pressure.

It was found that the bending moment in the tube wall is highly

dependent upon Young's modulus of the surrounding medium. An

approximate step-by-step analysis taking into account the nonli-

near stress-strain law for the soil showed that the bending moment

is nonlinear and is in agreement with the experimental data,

although the thrust still varies linearly with surface pressure.

The elastic analyses showed that the thrust at the springline

exceeds the hydrostatic load by 20-30%, i.e., negative arching

occurred. This difference was attributed to the assumption about

full bond at the interface between soil and tube.

Trott and Gaunt (1972) used the constant strain triangular

element to represent soil and the line element to approximate the

steel pipe. The line elements could sustain axial load only. On

the basis of a comparison with field measurements they concluded

that the finite element analysis shows a promising future in this

type of problem.

Abel et al., (1973) studied the stresses around a flexible

elliptic pipe by using a experimental and numerical methods.
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Quadrilateral elements were used to model both the pipe and soil.

The displacement model chosen had a quadratic variation and hence

the 4-node element was nonconforming. As a result, the con-

vergence to exact elasticity solutions is such faster than the

simple, isoparametric quadrilateral elements, particularly when

flexural behavior is present. The Interface between soil and pipe

was assumed to be full bond and the material properties were

treated as linear elastic. Based on the experimental work it was

concluded that for deep pipe the normal stresses were signifi-

cantly reduced and the hoop stresses were significantly increased

with Interface slippage. The internal stresses induced in the

pipe wall were also reduced through the more even distribution and

lower values of normal stresses around the pipe. For the shallow

pipe, the same effect is less evident. The internal stresses in

the shallow pipe wall may not be disturbed much from the varied

Interface condition.

Anand (1974) used the finite element method to compute the

stresses at the soil-pipe Interface. The reinforced concrete pipe

was represented by 320 quadrilateral plane strain elements with

nonlinear material properties and proper cracking mechanisms. The

soil was modeled with up to 257 quadrilateral and triangular plane

strain elements with nonlinear elastic properties, and Young's

modulus and Poisson's ratio were determined by unlaxial strain and

triaxial tests. The interface condition between the pipe and the

I. m m m Imeelm i '
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soil was assumed to be full bond. The measurements of normal

stresses in the soil and at the soil-pipe interface and of the

displacements in the soil were obtained and were used to compare

with the analytical solution.

Katona (1976) developed a finite element program CANDE

which stands for Culvert ANalysis and DEsign. Small strain theory

and plane strain cases are assumed. The soil is modeled by

quadrilateral elements and the pipe is represented by plane strain

beam elements. The soil properties are modeled by linear elasti-

city. overburden-dependent model, and extended Hardin model. A

bilinear stress-strain relationship is used to represent the

steel, aluminum and concrete material properties. The soil-

culvert interface is modeled by Interface elements which allow for

frictional sliding, separation, and rebounding. Chang, Espinoza

and Selig (1980) used this program to analyze the Newtown Creek

culvert. Measurements were made of bending and thrust stresses in

the steel, deflection of the culvert, backfill stresses, and back-

fill strains and deformations. However, the validation of the

CANDE's capabilities is Incomplete because very little field data

is available. A convergence problem was encountered when the

interface elements were used.

Duncan (1977) presented a finite element analysis of

buried flexible metal culvert structures. Beam elements were used

to represent the culvert and the 4-node quadrilateral elements
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model the soil. The hyperbolic model with Young's and Bulk moduli

by Duncan, et al., (1977) was used for soil properties. Interface

elements were incorporated between the culvert and the backfill to

permit relative displacements. The live loads due to traffic and

the Incremental placement of backfill around and over the struc-

ture were simulated numerically. A trial and error procedure was

used to determine what stiffness should be assigned to the upper

longitudinal seam with loose bolts. The measurements of stresses

and deflections of the culvert were used to calibrate the stiff-

ness of structure. It was concluded that the effects of slip bet-

ween the structure and the backfill are small, and the relative

stiffness of the structure and the backfill has no significant

effect on hoop stress even for shallow cover conditions. With a

shallow cover, live loads on the surface of the backfill can

induce unsymmetrical loads which generates larger bending moments

and cannot be resisted entirely through ring compression action.

Seam compression failure was believed to occur before the buckling

failure in this case.

Larsen (1977) analyzed the earth pressure around the

buried concrete pipe by testing scale physical models in the

centrifuge to obtain measurements which were matched to the

results from finite element methods. Specially designed load

cells were mounted in the wall of concrete pipe so that the normal

and tangential stresses on the pipe could be measured. Numerical

"im reI
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analyses were conducted using three computer programs, i.e.,

FESOL, ICES STRUDL-II and CR-FESM. The FESOL program was devel-

oped by Simpson (1973) who used simple constant strain triangles

to model the soil with linear elastic and Leighton Buzzard Sand

models. The results showed poor agreement with lab data. The

ICES STRUDL-II program was developed at Massachusetts Institute of

Technology for structural design. A variety of elements are

available, ranging from constant strain triangles to Isoparametric

elements with 12 nodes. The material models are all linear

elastic. However, the body forces have to be transformed to nodal

forces by the user. Considerable stress discontinuities were

observed along the interface between soil and pipe if the circular

pipe is modeled by elements with straight sides. The CR-FESM pro-

gram was written by Reimers (1975). Constant strain triangles

were used to model the soil and beam elements were used to repre-

sent the pipe. The beam elements were introduced because the

triangular elements could not model the behavior of the pipe accu-

rately enough without using too many elements. The hyperbolic

stress-strain model of Duncan and Chang (1970) was used for soil

properties without making any distinction between loading and

unloading. In comparison with the lab test results, this program

shows promise.

Krizek and McQuade (1978) presented the studies on the

behavior of buried concrete pipe. The finite element codes devel-

oped by Anderson (1974) and Wenzel (1975) were used to generate
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the analytical solutions which were compared with the measurements

from the field, such as the normal stresses on the pipe, the

strain at the inside and outside surfaces of the pipe, the strains

of the reinforcing steel, the stresses in the soil, diameter

changes, and the relative displacements between the soil and the

pipe. The soil was modeled with quadrilateral and triangular

plane strain elements. The soil properties were modeled as piece-

wise linear elastic, with the moduli values determined from the

uniaxial strain test, triaxial test, plane strain test, and the

true triaxial test. Six concrete elements comprise the thickness

of the pipe wall and two overlay steel elements represent the

reinforcement. The modulus of elasticity of the concrete is a

function of the major principal stress and the ultimate

compressive strength of the concrete. A proper crack mechanism

gets action when the tensile strength of concrete is reached and

consequently Increases the number of pipe elements. The soil-

pipe Interface was assumed to be fully bonded. Soil elements are

subtracted in excavation or added in backfilling Incrementally

during the construction process.

McVav (1982) analyzed buried, corrugated steel culverts

and reinforced concrete pipes. The culvert was modeled with

straight beam elements and the adjacent soil with either sub-

parametric triangular or quadrilateral elements. Four soil models

were considered: 1) bilinear modulus with constant Poisson's

ratio, 2) linear elasticity, 3) overburden-dependent model, and
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4) hyperbolic model with nonlinear Young's modulus and bulk modu-

lus. The steel properties were represented by a billnear model

and the rigid conduit by a trillnear model. The construction pro-

cedure was simulated and the boundary effect was studied. The

live loads and the buckling of the conduit wall were not con-

sidered. Due to the convergence problem created by combining the

nonlinear soil properties with the use of interface elements, the

Interface condition was not considered. However, the good agree-

ment between the measured and calculated responses from the code

with a hyperbolic soil model, Indicates that the interface condi-

tion might have a minimal effect on this problem. It was con-

cluded that the code with a hyperbolic soil model predicted the

response of a soil-culvert system very well in both flexible and

rigid culverts, and the overburden-dependent soil model should be

abandoned since the stress path in the soil element adjacent to

the culvert did not follow the path in the uniaxial compression

test on which this soil model was calibrated.

1.4 Objectives

From the review In the previous sections It Is obvious

that the classical and exact solution methods have limited success

for analyzing soil-culvert system and the finite element method

was regarded as the most promising device to analyze this kind of

complex problem. This does not necessarily mean that a new design

method should use finite element method, but the finite element
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method can offer a valuable insight into this problem and lead to

a new, simple and adequate design method provided that the finite

element program used can be shown to predict the exact response of

the system being analyzed.

The data for comparison with the results from the finite

element method can be used to determine whether this code is ade-

quate or not. In principle these data could be generated from

field measurements on full scale prototypes, but this would be

very time consuming and expensive. Indeed there are very few of

this kind of data available (McVay, 1982). Even in cases where

such data do exist, variability in field compaction, workmanship

and installation make these data inaccurate to be used to

calibrate the numerical finite element code (McVay, 1982). On the

other hand, centrifuge model testing Is a very cheap, easy and

accurate way to acquire the same data as could be obtained from

the full scale field tests.

The behavior of a soil-culvert system is very much depend-

ent upon the variables such as construction process and the prop-

erties of soil, culvert, and the interface between them. It seems

that the interface condition is not important for the shallow

culvert. This was evident from the works jf Abel et al., (1973)

and Duncal (1977). In order to exclude the possible effects from

the interface, a shallow buried culvert is used in this study. It
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Is extremely important to prepare the centrifuge model in a way to

make only one variable stand out each time and to model the

remaining variables faithfully.

Table 1.1 shows the comparison between the centrifuge

model and numerical model In terms of how the variables are incor-

porated. The displacements and strains of soil and culvert are

kept small by using a very stiff soil, a very flexible culvert and

moderate surface loading. The discretization of the culvert and

surrounding soil in the analytical model is a built-in ingredient.

The associated discretization error can be minimized by using

finer meshes. Many researchers recommended the 1 x 1 under

integration of stiffness in the thin shell and plate problems

where 4-node quadrilateral elements are used to model the shell

and plate (McNeal 1978, Hughes et al., 1978, and Prathap et al.,

1982). So under-integration for culvert stiffness and full-inte-

gration for soil stiffness are used in this study. It turns out

that under-integration is very critical in computing the response

of a buried thin culvert. This will be discussed in detail in

Chapter VI. The construction process and gravitational stress

history experienced by the centrifugal model before the applica-

tion of surface loading are also faithfully simulated in the

numerical model. The kinematic boundary conditions along the

interface between the soil and the model container is likely to

produce only vertical movement vertically and will be modeled as

such. The surface load is limited in order to maintain the stress
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Table 1.1

Variable Centrifugal Model Numerical Model

displacement small displacement small displacement
-strain theory

soil element infinitely small discrete 4-node quadri-

lateral finite elements
with 2x2 stiffness
integration

culvert infinitely small discrete 4-node quadri-
element lateral finite elements

with lx1 stiffness
integration

soil S.M. represented by linear
sandy silts elastical, hyperbolic

or Lade's model

culvert aluminum pipe represented by linear
elasticity

initial gravity induced faithfully simulated
stress stress process

stress surface loading faithfully simulated

boundary process

kinematic
boundary

interface insignificant pull bonding

slippage I.e. full bonding

soil density uniform faithfully simulated

dimension very close to plane strain
plane strain
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state in the culvert below the yield stress, so that linear

elasticity can be assumed for the culvert. This leaves the

constitutive model for the soil as the only variable in the numer-

ical analysis and makes it possible to concentrate on modeling the

soil properties by different constitutive models in order to

determine the accuracy of such models.

The objective of this thesis is to investigate the ability

of the linear elastic, hyperbolic and Lade's soil models to pre-

dict the response of a buried flexible culvert.



CHAPTER II

DESCRIPTION OF SOIL

2.1 Index Properties

The soil used in this investigation was obtained from the

valleys in the Nevada desert. Its grains shape vary from

subrounded to angular, and contain calcium carbonate which is com-

monly identified on the basis of reaction with diluted hydroch-

loric acid (Fugro National, Inc., 1979).

The original soil was sieved to remove any grains larger

than 4.75 mm to produce the grain size distribution shown in

Figure 2.1. The coefficient of uniformity, Cu , for the resulting

soil is 3.1 and the coefficient of curvature, Cc, is 1.0. With a

plasticity index equal to 3.9, the soil is classified as sand

silt. SM, under the Unified Soil Classification System. The spe-

cific gravity is equal to 2.66. All these values are listed in

Table 2.1.

A modified Proctor compaction test was performed with a

standard mold in which five layers of soil were compacted with a

5.5 pound hammer. Each layer was compacted 25 times with a 12

Inch constant drop height. The maximum dry density is equal to

125.9 lb/ft3 and the optimum moisture content is 10.8% as shown in

Figure 2.2.
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Gravel Sand

Coarse to Fine, Silt Clay
__________ medium I

U.S. standard sieve sizes
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eC

Grain diameter, mmn

Figure 2.1 Grain Size Distribution
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2.2 Engineering Properties

Soil samples were statically compacted to 90% of maximum

dry density, 113.4 lb/ft 3 , at the optimum moisture content of

10.8%. for conventional triaxial and isotropic compression tests.

The soil samples were compacted in 11 layers with the undercompac-

tion methods (Ladd, 1978) in which the degree of undercompaction

for the first layer was determined by a trial and error procedure.

Uniformity of the soil sample was achieved if 5% undercompaction

for the first layer was used. The same degree of under compaction

preparation for the centrifugal soil model.

A series of drained triaxial compression tests were con-

ducted. The range of confining pressure used would cover the val-

ues expected to occur in the centrifugal model tests. Since the

soil sample was unsaturated the volume change was measured by mon-

itoring the volume of water flowing into or out of the triaxial

cell chamber.

Figures 2.3 and 2.4 show the axial stress-axial strain

relations and volumetric strain-axial strain relations from the

tests at confining pressure of 2.5, 5, 15, 25 and 35 psi, respec-

tively. The soil dilates under low confining pressures and con-

tracts under high confining pressures. ?ost-peak softening for

low confining pressures gradually switches to hardening without a

peak value for high confining pressures. In Figure 2.4 It is

I~
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observed that the soil continues to decrease in volume during

unloading. This observation contradicts the theory of elasticity

but can be explained by the theory of plasticity. In the theory

of elasticity shown in the incremental form of equation 4.4, the

strain increment corresponding to a stress increment must follow

the direction of the stress Increment. Thus, an elastic material

will increase In volume upon unloading. However, in the theory

of plasticity, the strain increment is a function of the stress

increment and the total stress. If the total stress is

compressive although the stress increment is tensile, the net

influence on the strain increment could be compressive or tensile,

depending on the current stress state. The observation in the

triaxial tests can therefore be explained by such a theory of

plasticity.

The Mohr-Coulomb failure envelope is drawn for the failure

test data in Figure 2.5. The apparent cohesion, c, and the angle

of shearing strength, 0, were found to be 6.5 psi and 30.7 ° ,

respectively.

Finally, an Isotropic compression test was performed with

one cycle of loading and unloading. Figure 2.6 shows the test

results.
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CHAPTER III

DESCRIPTION OF EQUIPMENT

3.1 Description of the Centrifuge

The Department of Civil, Environmental and Architectural

Engineering at the University of Colorado in Boulder acquired its

10g-ton centrifuge in May of 1978. Specifications and dimensions

of this equipment are given in Table 3.1. The schematic of the

centrifuge in the flight position is shown in Figure 3.1.

The payload capacity represents the weight of soil con-

tainer and soil multiplied by the g-level at the mass center of

payload. The modification of the swinging basket for the experi-

mental package In 1983 Increased the payload capacity from 20,000

g-lbs to 35,000 g-lbs, which was verified in the summer of 1984.

The sample basket serves to carry the soil container which

includes the soil-culvert system and will be explained in Section

3.6.

3.2 Culvert and Strain Gauge

3.2.1 Culvert and Its Properties

A thin aluminum circular cylinder was chosen for the soil-

culvert interaction problem. The tube is 4 inches in O.D. and
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0.025 Inch wall thickness, and was obtained from the TUBESALES

Company of Salt Lake City.

This thin tube is made of 5052 0-Temper aluminum which is

alloyed with 2.5% magnesium, with very good corrosion resistance,

good workability, weldability and strength. Its properties are

listed in the Table 3.2. The length of tube used in the centri-

fuge Is 16.9 inches.

3.2.2 Selection of Strain Gauze

There are many types of strain gauges which can be found

in manufacturers' catalogs. For different problems only certain

types of gauge are appropriate. Selection of the best strain

gauge Is difficult and is more of an art than science. In general

the considerations for the selection of strain gauge include:

gauge grid area. gauge resistance, self-temperature-compensation,

gauge series, heat-sink property of the mounting surface, and

optimum strain gauge excitation level. The detailed description

of each factor can be found in the manufacturer's catalog. Based

on the above considerations, the type of strain gauge chosen was

CEA - 13 - 015CK - 120, Option W, made by Micromeasurements Inc.

3.2.3 Gauge Installation

Eleven gauges were installed each on the inside and out-

side of the tube. Figure 3.2 shows the schematic of the 22 strain

gauges and their relative positions. The installation procedure

is described in the following steps:
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(1) Two rectangular paper sheets are cut as shown in

Figure 3.3. One with size of 8" x 6.205" is used on the inside of

the tube, the other of 8" x 6.283" is used on the outside of the

tube. Eleven notches are cut in each sheet with a specified spac-

ing so that 180 is spanned between each pair of gauges, one on the

outside and the other on the inside.

(2) The ends of the tube are filed and sanded such that

the plane determined by the end surface is perpendicular to the

longitudinal direction.

(3) The 6.205" and 6.283" sides of the sheets are aligned

with the end surface of the tube, and the 8" sides are aligned

longitudinally at the inside and the outside, respectively. These

two sheets are taped in position.

(4) The gauge application technique as detailed in the

manufacturer's catalog is followed carefully. The locations of

the inside gauges are repeatedly checked through a mirror by exam-

ining whether the gauge is correctly oriented and fitted in the

notch before the M-Bond 200 adhesive is applied. Then firm thumb

pressure is applied to the gauge and terminal area for about 5

minutes to minimize the possibility of the trapped voids in the

glue line.

(5) Step (4) is repeated until all the gauges are glued

on. Then the two paper sheets are removed, completing the gauge

installation.
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3.2.4 Wirine Technique

The wire leads to the terminals of outside gauges have to

go through the wall of the tube immediately if the smooth condi-

tion of the outside surface is to be maintained. Therefore 22

small holes were drilled. The location and the diameter of these

holes were chosen with the following considerations. First, the

proper size of wire will not break easily at the soldering spot.

Second, the location of the hole is far enough from the gauge grid

so that the stress concentration will not affect the actual gauge

reading. From linear elasticity if the hole is 6 times the diame-

ter of the hole away from the gauge grid, this disturbance can be

neglected (Poulos and Davis, 1973). Figure 3.4 shows the position

of a hole and its size in relation to a strain gauge. By the

above consideration, these numbers are reasonable choices.

Labeled wire leads pass through these holes and collect

at one side of the tube after the other ends of the wire leads are

soldered to the terminals of the inside gauges. Next, the

labeled wire leads are soldered to the terminals of outside

gauges. The resistance of each gauge is checked to verify the

conditions and the labeling of the gauges. M-coating A is applied

to each gauge to protect the gauge and the adhesive from the pene-

tration of sand grain during the test. The wiring procedure is

now completed. Figure 3.5 shows the gauged and wired tube.
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3.2.5 Gauge Circuit and Amplification

The one-quarter wheatstone bridge circuit is adopted as

shown in Figure 3.6. Three dummy gauges, R1 - R2 - R4 - 120 0,

and one active gauge, R3 = 1200, complete one bridge with a 3.8

VDC power supply VCA. The strain calculated from the measurement

of voltage variation across the bridge, AVDB,is expressed as

follows:

-4 AVDB (3.1)

2.08 (2 AVDB + VCA )

where gauge factor = 2.08.

All the dummy gauges to complete the wheatstone bridges

are housed in an aluminum box which is mounted close to the

rotating shaft in the centrifuge and is wrapped with duct tape to

avoid the effect of temperature fluctuation in the centrifuge on

the bridge balancing as shown in Figure 3.7. The Jones strips

serve as the connectors between the one-quarter active gauge and

the three-quarter dummy gauges to complete the wheatstone bridge

as shown in Figure 3.8.

Since the slip rings at the top of the shaft shown in

Figure 3.1 will generate noise when the centrifuge is spinning,

the power supplies for gauge excitation and amplifiers are mounted

inside the centrifuge. In order to produce a higher signal-to-

noise ratio amplification of the signal is necessary before pass-

ing through the slip ring. The amplifier box is placed between

the cross-bridge wires and the slip rings.
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A general purpose, 25 channel amplifier system has been

built and housed in an aluminum box. To minimize the increased

gravity effect on each soldering joint and, in turn on the bridge

balancing, the amplifier box is mounted as close as possible to

the rotating shaft in the centrifuge. The calibration of

amplifier powered by ± 1OVDC is performed for each channel by

measuring the same signal with and without amplification three

times with the centrifuge in the stationary condition. The aver-

age ratio of amplified signal to unamplified signal is the ampli-

fication. It is assumed that operating the centrifuge will not

change the amplification. The amplifications of all 25 channels

are shown in Table 3.3.

3.2.6 Zero Stability

Zero stability is also called no-load stability, which is

essential to the accuracy of strain measurement. When the soil

container with the gauged tube buried in the soil is subjected to

the loads imposed by the centrifuge running at an constant angular

speed, the gravitational forces applied on the tube are constant,

and therefore, the cross-bridge output voltage reading should be

stable.

After several trial experiments the optimum warm-up time

was found to range between 30 and 40 minutes. However, due to the

possibility of trapped air bubbles or the hot-spot effect in the

gauge installation, perfect zero stability could never be
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TABLE 3.3 - Amplification of Amplifiers

Channel Amplification Channel Amplification
Number Number

1 980 13 952

2 970 14 946

3 976 15 963

4 977 16 943

5 955 17 950

6 959 18 931

7 940 19 930

8 969 20 964

9 947 21 973

10 936 22 945

11 981 23 958

12 980 24 970

25 987

I,-
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achieved. Also, the drifting of signal was so erratic and irregu-

lar that It was decided that the best way to obtain accurate data

was to shorten the test duration. The test duration of two cycles

of loading-unloading and data recording was around four minutes

for which an error in the recorded voltage output was about 10

millivolts. Compared with the actual signal output, this error

indicates that good accuracy is obtained from the data acquisi-

tion.

3.2.7 Zero Shift

The strain states around the tube when the latter is

loaded by external pressure under 50g are desired and constitute

the primary data to be collected. The differences between the

strain readings under lg (no spinning) and under 50g (198 rpm)

reflect the strain states of the tube caused by the soil self-

weight under an increased gravitational force field. Certainly

these data are useful for comparing with the analytical solution,

but these readings were not reproducible because a zero shift

occurred on the gauge circuits and amplifiers.

The zero shift occurs because of the gravitational effect

on the electronic parts in the amplifiers and the variation in

heat-sink conditions among gauges in the bridge circuit.

Therefore the attempt to get the initial strain readings under the

soil selfweight In the 50g gravitational force field was

abandoned.
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3.3 LVDT System

The deflections of the tube under surcharge loading are

desired for comparison with the analytical solution.

Plane strain conditions should be adhered to in the

centrifugal model test as closely as possible. Aiiy end friction

between the soil and the model container would violate this plane

strain condition. To avoid these unknown end effects the deflec-

tion measurements were made as close as possible to the center

section of the tube so that the influence of the friction on

these measurements can be minimized.

Twelve LVDT's were used to measure the tube deflections

from the inside. They were anchored on two hollow rings mounted

on a stiff rod that ran along the center line of the tube and

was mounted on the soil container at both ends. This is shown in

Figur? 3.9. The twelve LVDT's are oriented to measure the radial

deflections of the tube as shown in Figure 3.10.

The relative position of the strain gauge section and LVDT

section along the tube is shown in Figure 3.11. The wires from

the LVDT's go to one end of the tube and the wires from the gauges

go to the other end, such that two measuring systems can have the

best location to make the proper measurements without inter-

ference.

The choice of the LVDT type is governed by two factors.

First, the range and the precision, and second, the weight and

volume must be considered. The units selected are the Schaevi z
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Figure 3.9 Stiff Rod with 12 LVDTsl
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miniature LVDT's, model 100 MHR with a ±0.100 inch range. They

were calibrated with a t15 VDC power supply to produce a response

of I volt per 0.01 inch. The signal conditioning units for these

LVDT's were mounted close to the rotating shaft of the centrifuge

during the model test.

The radial displacements at the measurement locations are

either Inward or outward. The LVDT's core has to contact the tube

at all times. This was accomplished by using a spring to push the

LVDT core, with an extension rod in front, against the tube. The

stiffness of the spring cannot be too large to contribute an extra

resistance to the deflection of the tube and should not be so

small that it cannot sustain the weight of the LVDT's core and

extension rod under 50g as shown in Figure 3.10. By such con-

sideration the size of eigiloy wire used to form the spring was

determined to be 0.008" In diameter. The springs were made on the

lathe by simply wrapping the wire on a 1/16" diameter rod at a

zero pitch. When the spring was released from the rod it would

extend to its normal shape by itself.

The range of the miniature LVDT Is limited to ±0.1". In

order to utilize the whole range and to maintain the LVDT operat-

ing within this range In monitoring the tube deflections which may

vary around the tube, the position of the LVDT core must be preset

by adjusting the length of the extension rod attached to it. The

proper setting was determined by trial and error.
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3.4 Data Acquisition System and Polarity Check

The twelve LVDT signals and twenty-two strain gauge sig-

nals were passed through the slip rings and taken to the control

panel. Then these signals were transmitted to a Hewlett-Packard

Data Acquisition System, HP3597A, which is monitored by a HP9825B

computer. This is shown in Figure 3.12.

To make sure that the correct data were recorded, it was

essential to perform a polarity check on the strain gauges and

LVDT's through the data acquisition system. By bending a flexible

plate on which a single gauge was glued, compression or tension

was generated and the associated signal was checked. Similarly by

translating the core inward or outward the sign of the LVDT signal

was checked. The results are shown in Table 3.4.
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Figure 3.12 Data Acquisition aid Computer System
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TABLE 3.4 - Sign Convention of Strain Gauge and LVDT

Cross-bridge gauge's
voltage output strain sign

AVDB < 0 tension +

AVDB > 0 compression -

inside outside

wires LVDT

Core LVDT
Position Voltage output

inside +

outside
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3.5 Line Load Test

Although the strain gauges were selected and installed

carefully and the repeated zero-load stability and polarity tests

indicated that all the strain gauges were in fair condition, It

would still be advisable to double check the exact performance of

gauges through comparison with a known situation. For this pur-

pose, a line load test was performed on the instrumented tube.

This loading situation was chosen because a closed form solution

is available from the theory of elasticity.

The test procedure Is described as follows. The gauged

tube was laid on a flat platform and was loaded vertically through

a %" diameter steel rod which ran the whole length of the tube and

was clamped to the tube tightly at both ends to simulate the line

force reaction as shown in Figure 3.13. The load consisted of

metal plates about the length of the tube and was placed on top of

the tube. Strain readings were taken after each increment of

load. Typical test results are shown in Figure 3.14, and are

compared with the analytical solution of thin ring under diametri-

cal loading as shown in Figure 3.15. The agreement was excellent

except that a slightly larger moment was measured at the crown.

This may be caused by the imperfection of line load at the top of

the tube. Elastic behavior of the tube was observed throughout

these line load tests. Therefore, the performance of the gauges

is considered to be satisfactory.

I - m m m
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3.6 Soil Container

The container in which the soil-culvert interaction prob-

lem was simulated was placed in the sample basket of the centri-

fuge as shown in Figure 3.1. The container consists of two

rectangular boxes made of 0.5 inch thick aluminum plates with four

half-circular openings shown in Figure 3.16. After the completion

of compaction in both boxes (to be assembled later), two half-

circular trenches were cut out. The gauged tube was placed in the

lower trench before the two boxes were assembled together. With

this technique the uniform soil density around the tube was main-

tained. The loading apparatus was mounted on the top surface of

soil to apply the surface loading.

3.7 Loading Apparatus

The loading apparatus consists of three parts, a, b and c,

as shown in Figure 3.17. A silicone rubber membrane is compressed

by part b and c by tightening the assembly screws. Compressed air

supplied through the 1/8" NPT fitting inflates the membrane to

apply the pressure on the soil surface and causes the deflection

of the tube. The width of the effective loading area is 2.9

inches. This loading apparatus can be positioned at several loca-

tions on the soil surface for the symmetrical and unsymmetrical

cases. Through minor modifications the same apparatus was used as

the mold for making the silicone rubber membrane.
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3.8 Model Preparation

The procedure for soil preparation, compaction, trench

making, and the assemblage is described in the following steps:

(1) Weigh twenty-four units of oven-dried soil and

spread them individually on plates to cool down, as shown in

Figure 3.18. The weight of each unit is governed by the density

of the soil to be achieved by compaction.

(2) Mix the dry soil with the proper amount of distilled

water calculated to produce 10.8% of moisture content, as shown in

Figure 3.19.

(3) Store the mixed wet soil unit for one day in a can

whose inner surface is coated with wax to prevent the loss of

moisture, as shown in Figure 3.20.

(4) Compact the soil in the lower container box in six-

teen layers and in the top box in eight layers with 0.5 inch

thickness for each layer as shown in Figure 3.21. The under com-

paction technique (Ladd, 1978) was used to achieve a uniform den-

sity throughout the depth of soil. The compaction of the last

layer should stop when the soil surface is flush with the top sur-

face of the container. The average compaction effort for each

layer is listed in Table 3.5.

(5) Trim any extra soil away with a very flat cutter to

have the top surfaces of soil and box co--planed, see Figure 3.22.
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Figure 3.18 Oven Dried Soil is Cooling Off
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Figure 3.20 Waxed Cans
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Figure 3.21 Soil Compaction on the Press Machine
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TABLE 3.5 - Average Compaction Effort for Centrifuge Soil Model

Layer Vertical Layer Vertical
Order Pressure Order Pressure

(psi) (psi)

T
o 1 68 16 59

p
2 83 B 15 60

C 0
o 3 81 t 14 60
n t
t 4 79 o 13 61
a a
i 5 76 12 60
n C
e 6 71 o 11 64
r n

7 64 t 10 66

a
8 63 i 9 63

n
e 8 65
r

7 67

6 74

5 70

4 66

3 65

2 71

1 58
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Figure 3.22 A Flat Cutter to Trim Extra Soil Away
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(6) Cut a half-circular trench from each box. First, a

rough cutting was made by the device shown in Figure 3,23.

Second, a precise cutting was made by the device shown in Figure

3.24. The cutter could slide along the rod and rotate with the

rod around the adapters which were fitted at the center of the

circular plates that were mounted on the end wall of the soil box.

With this technique the exact size and location of the trench

could be reproducible from test to test. Figure 3.25 shows the

final result of the cutting. The distinct edges and the smooth

surface in the trench fully demonstrate the high quality of this

trench cutting technique.

(7) Place the gauged tube in the trench at the lower soil

box with the right orientation after a band of soil at the longi-

tudinal section where the strain gauges were located was removed.

Then the top soil box was placed on top of the lower box.

(8) Place the LVDT cores into matched LVDT bodies mounted

on the stiff rod. This stiff rod with 12 LVDT's was inserted into

the tube and each core was pushed against the tube by the spring

in the LVDT body. Both ends of this stiff rod were anchored at

the center of the circular plates which connected the two soil

boxes into one soil container. The leadwires from strain gauges

and LVDTs passed through the opening separately at each end.
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Figure 3.24 Trench Cutter for Precise Shape
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(9) Place the loading apparatus on the soil surface and

fix it at both ends against the wall of the soil container. The

uncovered soil surface was covered by two plastic sheets which

were taped against the container wall so that the soil would not

dry up when it was spun in the centrifuge. Figure 3.26 shows the

final product of assembly.

The soil container was moved into the centrifuge and made

ready for the test.

(10) After the cent.'ifuge test, the soil was dug out and

placed in a big pan to air dry. Then a crusher adjusted to have

the right size of opening was used to breakup the soil crumb.

This recycling equipment is shown in Figure 3.27.

This completes the preparation of one test.

3.9 Test Procedure

The test procedure used in each centrifuge test is

described in the following:

(1) The soil container was assembled in the sample basket

with the LVDT leadwires facing outside.

(2) The connector from LVDT leadwires was plugged into

the connector leading to the signal conditioning modules. After

the power was on, all the output signals were checked for loose



78

A

Figure 3.26 The Completed Assembly
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Figure 3.27 Soil Crusher
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wires. The initial readings of all LVDTs were compared with

the preset reading in Section 3.3.2 to make sure the starting

position of each LVDT core was satisfactory.

(3) Connect all the gauge leads to the ordered Jones

Strips which lead to the dummy gauge box. Power was then turned

on. When all the bridges were balanced and the readings found to

locate within the effective range, the power was turned off to

avoid overheating. The Jones Strips were wrapped with plastic

sheet to keep the exposed wires and posts from the fluctuating

temperature during spinning as shown in Figure 3.8. This enhanced

the zero stability of all bridges.

(4) The polyflo tubing leading to the loading apparatus

was connected to one of the hydraulic lines, so that the

compressed air supplied through the hydraulic rotary joint would

pressurize the rubber membrane to generate the surface loading.

Outside the centrifuge, the same pressure line was connected to a

pressure regulator and a pressure gauge.

(5) The data acquisition system was connected to the

front control panel. The signals from the gauges and the LVDT's

were checked for polarity.

(6) With both baskets being locked in the in-flight posi-

tion, weights were put in the counterweight basket until the cen-

trifugal arm was leveled. After the arm was locked, the baskets

were let down.
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(7) Turn on the power for gauges and LVDTs and monitor

for one-half hour. When stable gauge readings were observed, data

recording under 1 g condition was performed. The centrifuge was

then spun up slowly to minimize the undesirable tangential acce-

leration, taking 6 minutes to go from 0 to 198 rpm.

(8) When a speed of 198 rpm was reached, data recording

was executed once.

(9) Incremental pressure of 10 psi was quickly applied

and was followed by the data recording. It took about 15 seconds

for each step of load. Two cycles of loading to a maximum pres-

sure of 40 psi and unloading were performed within 4 minutes.

(10) The last set of data was recorded after the centri-

fuge was stopped.

(11) All the data were printed out and sorted, any indi-

cation of out of balance or abnormal signal was written down.

Based on this, the correcting procedure was set up in the

centrifuge.

(12) After the correction in the centrifuge, the soil

container was released and disassembled. The gauges on the tube

were checked by an Ohmmeter to see if there was any physical dam-

age or significant increase in resistance on the gauges. All the

cores and springs for LVDTs were collected for reuse in the

future.

-9nn m m ~



82

3.10 Centrifuge Test Results

After going through zero stability, zero shift and polar-

Ity checks in the centrifuge, two se.les of centrifugal tests on

buried culvert were conducted. In the first series test, a uni-

form strip loading (Figure 3.17) was applied on the ground surface

through the loading apparatus which was positioned symmetrically

above the center line of the culvert. In the second series test,

the uniform loading was shifted to one side so that the edge of

this strip loading coincided with the center line, I.e., unsym-

metrical loading case. The rest of the soil-culvert system and

the test procedure were exactly the same In those two series

tests. The testing continued until at least three repeatable test

results were obtained in each series. The test results in terms

of the strains, deflections, hoop stresses and bending moments in

each series test are listed in Appendix A.

The hoop stresses, ah , and the bending moments, M, induced

in the pipe walls with the linear elastic material law by a plane

strain loading can be calculated from the measured strains using

the following relations:

1- ) (co + ei) E (3.2)ah ' (1+V)(1-2v) * 2(3)

l-i * (Co-Ci) Eta
N = (l+V)(l-2V) 12 (3.3)
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where E - Young's modulus of the culvert material

V = Poisson's ratio of the culvert material

t = thickness of culvert wall

Co = circumferential strain measured from the gauge on

the external face of the culvert

CI  - circumferential strain measured from the gauge on

the internal face of the culvert

Due to the symmetry, the test results in the first series

were plotted on one half of the tube. Figure 3.28 shows the

deflected shape of the culvert under 10, 20, 30 and 40 psi surface

loading. The largest inward deflection is located at the crown

where the pressure-deflection relation is plotted in Figure 3.29.

The largest outward deflection is located at the springline where

the pressure-deflection behavior is shown in Figure 3.30. The

hoop stresses are demonstrated in Figure 3.31 with the compressive

stresses being plotted inside the half circle. The bending

moments which cause the sagging of the culvert are plotted inside

the half circle and the hogging moments are plotted outside as

shown in Figure 3.32.

In the second series test, the gauged culvert was acci-

dently overloaded to cause buckling failure. A spare culvert

without strain gauges was used to continue the test. Therefore,

only the deflected shapes of the culvert were available and are

shown In Figure 3.33.

I ~ m m m•mn
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CHAPTER IV

CONSTITUTIVE RELATIONS

4.1 General

The constitutive relations of soil and culvert used in the

finite element analysis are described herein. The stress-strain

relations of aluminum can be accurately described by isotropic

linear elasticity until the yield stress is reached. Since the

stress state in the culvert is maintained below the yield stress

throughout the model test, isotropic linear elasticity is a good

choice as the material law for the aluminum culvert. On the other

hand soil is probably the most difficult material the civil engi-

neer has to deal with, due to the dependency of its properties on

the stress-strain history, stress path, density, water content,

etc. In general, these features produce such physical behaviors

as nonlinearity, inelasticity, anisotropy and time-dependency.

The up-to-date development of constitutive laws for soil can be

founded in the review paper presented by Ko and Sture (1980). The

important ingredient to connect the equilibrium and compatibility

conditions is the stress-strain law, including the failure con-

dition. The soil deformation from its initial stress-strain state

through failure and beyond can be predicted accurately provided

that the stress-strain-strength behavior is modeled correctly. In

. ,' li I I4
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this work three models are adopted to examine their individual

capability in modeling the soil-structure interaction of a culvert

system. They are 1) isotropic linear elastic stress-strain rela-

tion, 2) hyperbolic stress-strain relation, and 3) Lade's elasto-

plastic relation.

4.2 Isotropic Linear Elastic Stress-Strain Relation

4.2.1 General Description

This relation is also named as generalized Hooke's Law for

the three-dimensional case. ''iereas Hooke's Law is used for

uniaxial state of stres .A strain. This three-dimensional lin-

ear elasticity can be Aritten as:

aij = Cijkl Ckl (4.1)

in which aij and ekl are second order tensors and Cijkl is a

fourth order tensor with 81 constants. Since both aij and ekl are

symmetrical, one has the following symmetrical conditions:

Cijkl = Cjikl . Cijlk = Cjilk (4.2)

Hence the maximum number of independent constants is reduced to

36. Further, if we specify isotropic symmetry, that is the prop-

erties along any direction are identical, then the number of inde-

pendent constants is reduced to two. There are several combina-

tions of these two constants. See for instance Chen and Saleeb,

1982, p. 155. The most commonly used combination consists of

Young's modulus, E and the Poisson's ratio, v.
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The stress-strain relation can be expressed in matrix

forms. These forms are suitable for use in solutions by the

finite element method. In matrix form equation 4.1 Is expressed

as follows:

OX' I-V v , v 0 e

a , 1- ) v 0 0 0 y

azE 1) 1 -V 0 0 0 C

Txy (l+i)(1-2v) 0 0 0 1 0 0 'xy

2 y
Tyz o o o o 1-2 ,_o,._/'

TzxL 0 0 0 0 0 1-2v, zx

(4.3)

or

ex I -V V 0 0 0 ax

1- 1 -V 0 0 0 y

=z V -1V 1 0 0 0 a

Yxy E 0 0 0 2(1+v) 0 0 Txy

YYZ 0 0 0 0 2(1+v) 0 Ty z

Yz 0 0 0 0 0 2(1+VA TZX

(4.4)

Plane strain conditions In the xy plane (Cz=Vyz=Yzx= 0)

are assumed in the present finite element analyses. By deleting

three columns and three rows associated with ez, fyz and Yzx from

equation 4.3 the resulting stress-strain equations can be written

as:
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E E 1- V 0 Cy (4.5)

yJ (l)(1-2) L- 2 uy

Txy 0 0 1-2 xy

The strain-stress equations cannot be obtained

simply by deletion from equation 4.4. This is because UztO

although Tyz=TZX=n. Instead, they can be found by inverting the

relation of equation 4.5.

rex i [_V 0I a

I+V V 1' 0 (4.6)

x 0 0 2 TX

By manipulating equations 4.3 and 4.6 with cz=O it can be

shown that

az = l(ax + ay) (4.7)

Equations 4.5 and 4.7 are used in the displacement based

finite element code to form the stiffness matrix and find the

stress state. To define these equations for soil and an aluminum

culvert it is necessary to find the two parameters, E and V,

through laboratory experiments.

4.2.2 Parameter Evaluation of Soil

A series of conventional triaxial CTC tests were performed

for parameter evaluation. The results are shown in Chapter II.

In the CTC test a, > a2 - 03. From equation 4.4
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S1 (0 - 2113) = E + (4.8)

where a3 Is a constant.

By differentiating equation 4.8 the following equation can

be obtained

d (01-a3)(IIE (4.9)

In the CTC test, the volumetric strain can be expressed as

ev = (1-2v)e1 . The slope of ev vs el at the origin is 1-2v and is

evaluated for each confining pressure. The average value of 1-2V

can be obtained. The Young's modulus Is the slope of the deviator

stress-strain curve and it varies with the axial strain, el, and

the confining pressure, a3 . Therefore the constant values chosen

for E and v have to be averaged over these variations. In this

work the following values are chosen

E = 2500 psi (4.10)

V - 0.3 (4.11)

4.2.3 Prediction of Triaxial Test

From equations 4.4. 4.10 and 4.11 the analytical predic-

tion of CTC test results can be obtained. Figures 4.1a and 4.1b

show the comparison between the laboratory results and the predic-

tion from isotropic linear elastic stress strain relation. The

poor agreement is attributed to the constant modulus and Poisson's

ratio and the simple stress-strain relations. Therefore, the

nonlinearity of volume change and stress-strain relation and dila-

tancy cannot be modeled.
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4.2.4 Parameter Evaluation of an Aluminum Culvert

The culvert is made of 5052, 0-Temper aluminum. This

alloy is made with 2.5% magnesium so that it has many features

like good corrosion resistance, good workability, weldability, and

strength.

The engineering properties of this kind of material can be

found in most textbooks on strength of materials.

E - 10.2 x 106 psi (4.12)

V = 0.334 (4.13)

These values have been well established and the re-evaluation of

these values is not necessary.

4.3 Hyperbolic Stress-Strain Relation

4.3.1 General Description

The hyperbolic constitutive relation proposed by Duncan

and Chang (1970) has been widely used in finite element analyses

of a number of different types of static soil mechanics problems

(Clough and Duncan, 1971; Clough. 1972; Duncan and Chang, 1970;

Duncan and Clough, 1971; Duncan and Lefebvre, 1973; Kulhawy and

Duncan, 1972; Lefebvre et al, 1973; Duncan. 1977; McVay. 1982) and

the values of the hyperbolic parameters were determined for about

150 different soils (Duncan et al, 1980).
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The hyperbolic relations account for three Important

characteristics of the stress-strain behavior of soils, namely

nonlinearity, stress dependenc: and inelasticity. However, the

material is still regarded as isotropic. Therefore, for each

stress increment only two parameters are needed to uniquely deter-

mine the stress-strain relation and in general these two parame-

ters vary from increment to increment. The parameters have easily

understood physical significance and the coefficients are easily

evaluated from CTC tests. Those advantages made this model very

popular. On the other hand, there are some significant limita-

tions inherent in this model. Shear dilatancy, strain-softening

and the intermediate principal stress effects are not modeled in

these stress strain relations.

There are three versions of hyperbolic stress-strain rela-

tions. In all those, the tangential Young's modulus, Et . is used.

In the first version a constant Poisson's ratio is used.

Nonlinear tangential Poisson'h ratio, vt . is used in the second

version. Nonlinear tangential bulk modulus, Bt . is used in the

last version. They are presented in the following.

Hyperbolas were used first by Kondner (1963) and Knodner

and Zelasko (1963) to represent the nonlinear stress-strain curves

obtained from CTC tests. These hyperbolas have the equation:

01-a3 = 1 + lC (4.14)
El (l-a3)ult
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where El is the tangent Young's modulus at the origin and

(al-a3)ult is the asymptotic value of stress difference at large

values of the axial strain, C1 .

Rf, called the failure ratio, is used to define the rela-

tive value between failure and ultimate stress difference

Rf (l3f (4.15)(al-a3)ult

The stress dependent stress-strain behavior can be repre-

sented by varying Ei and (al-a3)ult with confining pressure. The

variation of E i with 03 is modeled by an equation of the following

form suggested by Janbu (1963):

Ei - KPa (3)n (4.16)
Pa

where Pa is a reference pressure usually chosen as the atmospheric

pressure, and K and n are two parameters. By using the Mohr-

Coulomb failure criterion

2C cos + 203 sin (4.17)
(aI-a3)f - I -sin@ 4.7

the variation of (01-3)ult with 03 is accounted for with the com-

bination of equations 4.15 and 4.17.

2C cosO + 203 sinO (4.18)(a-a3)ult = Rf(l-sinO)

The instantaneous slope of the stress-strain curve, Et, is

needed for the constitutive relation in the finite element method.

By differentiating equation 4.14 with respect to £1
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a (01-a3) EiEt-(4.19)

(aI-a3)ult

and substituting equations 4.16 and 4.18 into equation 4.19, the

following equation can be derived:

[ Rf (1-sino) (l-a3) 0'3 n
Et = - 2C cos# + 2a3 sin# KPa

which Is used during loading.

The inelastic behavior is represented by the use of dif-

ferent modulus values for loading and unloading. The same value

of unloading-reloading modulus, Eur, is used for both unloading

and reloading. The stress dependent Eur is represented by the

following equation:

Eur = Kur Pa P (4.21)

where Kur is the unloading-reloading modulus number. The value of

Kur is always larger than the value of K (for primary loading).

so Eur is always larger than Et.

A very simple loading-unloading criterion has been used in

which unloading-reloading Is indicated when the current value of

the stress level (o1-a3)/(Ol-03)f is lets than the maximum previ-

ous value. A more detailed discussion about this criterion is

shown in Appendix B.
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The second part of the hyperbolic constitutive relation is

the axial strain-volumetric strain relationship. In the first

work by Duncan and Chang (1970). a constant Poisson's ratio v was

assumed. In the CTC test £2 - £3 = - eIl. Thus,

eV = (1-2v) el (4.22)

Equation 4.22 represents the linear relation between the

com 2essive volume strain and axial strain.

A subsequent extension developed by Kulhawy and Duncan

(1972) allows for nonlinear volumetric strain. A hyperbolic curve

fitting for the Poisson's ratio is used with a similar approach as

for the axial stress-strain relationship. The bulk modulus, B,

can be written in terms of E and V as

B E (4.23)
3(1-2V)

Since the Poisson's ratio app.oaches 0.5 when the slope of the

curve ev vs c, tends to become horizontal, the bulk modulus

increases rapidly. This means that volumetric response changes

with shearing and this disagrees with the fact observed in the

laboratory. To overcome this problem Duncan et al. (1980) pro-

posed the latest version of hyperbolic model in which nonlinear

volume change is accounted for by using a constant bulk modulus,

B. The bulk modulus is assumed Independehit of shear stress level

(al-a3 ) and dependent on the confining pressure:

B - Kb Pa P (4.24)
Pa

where Kb and m are two parameters.
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By eliminating V from equations 4.22 and 4.23 the follow-

ing equation can be derived

C B C (4.25)CV= 3B

This equation implies the nonlinearity between ev and el is gener-

ated by the nonlinear relation of E and l.

The latest version of the hyperbolic model with Young's

and bulk moduli is adopted (see equation 5.15). The next section

shows the procedure to calibrate the model.

4.3.2 Parameter Evaluation

A serih of conventional triaxial tests are necessary to

calibrate this model. The laboratory tests must be performed

using specimens compacted to the same density and water content as

in the centrifugal physical model. The same drainage condition is

also used in the laboratory tests and the centrifugal test. The

confining pressures used in the CTC tests cover the pressure range

experienced by the soil elements in the centrifuge model, i.e.,

3 2.5, 5, 15, 25, and 35 psi.

The Ei value from each CTC test is 'first determined. The

evaluation of parameters K and n is performed by plotting Ei/Pa

versus o3/Pa on log-log scales. The best fitting straight line

can be determined, as shown in Figure 4.2. The value of K is

equal to the value of EI/Pa at the point where C3/Pa is equal to

unity on the best fitting line mentioned above. The value of n is

equal to the slope of this best fitting line.
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The value of Kur is usually determined by assuming that

the modulus exponent n for unloading-reloading (equation 4.21) is

the same as that for primary loading (equation 4.16). Equation

4.21 can be transformed to the following form

Kur Eur (4.26)
Kur = Pa~

where n is the value evaluated from the previous step and the

unloading modulus Eur can be measured from each test. Then, the

corresponding value of Kur can be determined from equation 4.26.

The scattered values of Kur are averaged to give the represen-

tative value of Kur.

Two steps are involved in determinine the values of Kb and

m. The first is to determine the value of B from the CTC test

data. For soils with volume change curves which do not reach

horizontal tangents prior to the stage at which 70% of the

strength is mobilized, the value of B is determined by using the

following equation

B = (a,-a3 ) (4.27)3ev

together with (al-a3) = 0.7(al-a 3 )f and the corresponding value of

€v . For highly dilatant soils having volumetric strain curves

that reached horizontal tangents prior to the stage of the test at

which 70% of the strength is mobilized, the data corresponding to

the stage at which the volumetric strain curves become horizontal
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are used In calculating values of B. The second step Is to plot

values of B/Pa against 03/Pa on log-log scales to determine the

values of Kb and m as shown in Figure 4.3.

The selected value of parameter Rf is the average value of

the results from equation 4.15 for each CTC test after the

(al-a3)ult and (al-a3)f are evaluated from equations 4.14 and

4.17, respectively.

The Mohr's circles are plotted for the failure stress con-

ditions In the CTC tests and the value of strength parameters C

and 0 are determined by drawing the failure envelope and measuring

the intercept and angle of inclination as shown in Figure 2.5.

The values of these nine parameters evaluated for the

sandy silts used in this study are listed in Table 4.1

4.3.3 Prediction of Triaxial Test

The hyperbolic model, calibrated in the fashion just

described, is implemented in a constitutive driven computer pro-

gram which is used to predict the CTC test response of the soil.

Figures 4.4 and 4.5 show the comparison between the laboratory

test results and the model's prediction. As expected the stress-

strain behavior is in good agreement. However, the dilatant beha-

vior observed at the low confining pressures in not modeled

accurately.
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Table 4.1 -Parameters in Hyperbolic Constitutive Relations

K -=560

n = 0.42

Stress-Strain loading Rf - 0.95

c - 6.5 psi

- 30.7-

unloading Kur = 820

Kb = 170
Strain Direction

= =0.19
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4.4 Lade's Elasto-Plastic Relation

4.4.1 General Description

An elasto-plastic constitutive model for three-dimensional

stress-deformation analysis for monotonic loading only was pro-

posed by Lade (1972, 1977) for cohesionless soil. Later Lade

(1979) predicted the behavior of normally consolidated clays with

this model. The analytical description of this model is based on

conventional work-hardening Incremental plasticity theory. A

semi-empirically developed work-hardening rule was incorporated

into the yield function in the model. The resulting constitutive

equation relates the effective stress increments to the total

strain increments.

This model is capable of simulating several essential fea-

tures of the behavior of soil: nonlinearity, stress-path depen-

dency, shear dilatancy, the influence of a 2 , and the coincidence

of strain increment and stress increment axes at low stress levels

with the transition to the coincidence of strain increment and

stress axes at high stress levels. It also has some refined

features, like the prediction of plastic strain in proportional

loading and the curved yield and ultimate strength surfaces.

Lade's model assumes that the total strain increment (de)

Is divided into three components: an elastic strain increment

(dee), a plastic collapse Increment (dec), and a plastic expansive

increment (dP), so that
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de) - (dee) + (dec) + (dcP) (4.28)

Figure 4.6 Illustrates schematically these three strain components

in a conventional triaxial compression test.

The elastic strain increment is calculated by generalized

Hooke's law and is recoverable upon unloading. Two elastic moduli

Eur and v are used to give this component:

Eur , Kur Pa (3n (4.29)
Pa

0 = constant (4.30)

where Kur and n are material parameters and Pa is the atmospheric

pressure.

The plastic collapse strains are calculated from a plastic

stress-strain theory which includes a cap-type spherical yield

surface, as shown in Figure 4.7.

The yield function is given by

Fc ((a), Wc) = f ((o)) - fq(Wc) - 0 (4.31)

where f ((o)) = fc = Il + 2 12 gc (4.32)

and I I ox + Oy + O z

12 = TyxTxy + TXZTZX + TyzTzy - (Ux y + ayaz + axoz )  (4.33)

Wc is a work-hardening parameter.

A work-hardening relationship can be defined experimen-

tally by the inverse function of fc(Wc),
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Wc(fc) = C Pa( p- )p  (4.34)

where C and P are material parameters. The incremental plastic

work is expressed by

dWc _{ f)T(dec) (4.35)

The associated flow rule is defined by

Idec) - Ac { a (4.36)

Substituting equation 4.36 into equation 4.35 the following is

given

A= - dWc . dWc (4.37)kc = (a) Tjafcj 2fcV ( .7

3a

where dWc can be derived from equation 4.34, i.e.

dWc = ) a ' - iP d(-%) (4.38)

The collapsive strain increments can be derived by eliminating Ac

from equations 4.36 and 4.37

dC I  o'x
dczC ax

= -- 
(4.39)

dyC fc 2Tx

dyxzc 
2TXZ IdyyzC 2 Tyz

The plastic expansive strain increments are derived in the

following steps.
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The ultimate strength surface which remains stationary in

principal stress space during loading and unloading has the

appearance of the irregularly shaped hexagonal pyramid (Figure

4.7). The yield surface was assumed to have the same shape as the

ultimate strength surface. The yield function is assumed as:

Fp((o),Wp) = fj({o)) - fj'(Wp) = 0 (4.40)

where fy((a)) = fp (IL - 27) (IL)m (4.41)
13 Pa

13 0 x0 y~z + TxyTyzTxz + TyxTzyTzx -

(UxTyzTzy + GyTxzTzx + OzTxyTyx) (4.42)

When fp = , the corresponding surface Is the ultimate strength

surface.

The plastic potential function gp is defined through

experimental observation.

Pa m)

gp . I13 - (27 + n2( 1) 13 (4.43)

where n2 is constant at given values of 03 and fp,

n2 = S fp + R Va3P a + t (4.44)

in which S, R and t are material parameters. Through the observa-

tion In the laboratory, the relation between Wp and fp can be

expressed by
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fp - a e-bWp (Wp/Pa)1/q , q > 0 (4.45)

where a = 171 ( e Pa )1/q (4.46)
hWp peak

b 1 - (4.47)
q Wp peak

Wp peak P Pa (03/Pa)1  (4.48)

q - a + (03 /Pa) (4.49)

A nonassociated flow rule defines the relation between

stress and strain increments by the following expression:

(deP) = pgp/aa) (4.50)

where the Xp) 0.

The incremental plastic work is expressed by

dWp = (a)T  (dep ) (4.51)

Substituting equation 4.50 into equation 4.51 gives

Ap dW (4.52)
(aT(agp/ao

where (T(agp/a) - 3gp + m .2 (L), 3 (4-53)
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Based on equation 4.45 the increment in plastic work can be

expressed as follows:

dWp = dfp ( i - b) (4.54)
fp q Wp

Substituting equations 4.53 and 4.54 into equation 4.52 the

resulting expression is then used to eliminate Ap from equation

4.50. The following is obtained

df0  11P

(den) = fp ( b) (agp/aa) (4.55)
3 gp + m n2 ( )m 13

where (8gp/aa) is obtained by differentiating equation 4.43 with

respect to (a).

The plastic expansive stress-strain relationship is

obtained as

dexP Cyz-Tyz

dd P "T aXaz-TIz

T~(~..- b) (2+ 2 a)J txy-T~ycz p ( -q~~p [27+n2( Pa) a ]  OXa-T~

Idyyz p  3 gp+mn2 (Pa/I1 )MI3  I1 -2OxTyz+ 2TxyTzx

d~zx p  - 2OyTzx+2TyzTxy

Ixy p 2 aZTXy+2TzxTyz
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1

1

13 m Pa) ] 1 (4.56)

0

0

where Wp, fp and gp are evaluated by equations 4.45, 4.41 and

4.43, respectively, and those material parameters are obtained in

the next section on model calibration. The total strain increment

can be obtained by summing up three strain components calculated

from equations 4.4, 4.39 and 4.56 as shown in Figure 4.7.

The Lade's stress-strain-strength theory described above

can only model sand and normally consolidated, remolded cohesive

soils. That means it cannot model soils that exhibit cohesive

properties and tensile strength. However, the soil used in this

research shows a nonzero cohesion (Figure 2.5). Some modifica-

tion of the theory Is necessary for this soil. Lade (1981) and

Kim and Lade (1984) proposed a simple way to include this effect

into the strength evaluation for concrete and rock. In order to

include the cohesion and the tension which can be sustained by

soil, a translation of the principal stress space along the

hydrostatic axis is performed as illustrated in Figure 4.8.

Thus, a constant stress a.Pa is added to the normal stresses

before substitution in equation 4,41:
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Figure 4.8 Translation of Principal Stress Space Along

Hydrostatic Axis to Include Effect of Tensile
Strength in Failure Criterion
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F = ax + a.Pa  (4.57a)

y = oy + a.Pa (4.57b)

5-z = az + a.Pa  (4.57c)

where "a" is a dimensionless parameter and Pa is atmospheric pres-

sure in the same units as a x , a. and az. The value of a*Pa

reflects the effect of the tensile strength of the material. The

stress-strain relations within the region bounded by 0 4 oi 4 a.Pa

and yield surfaces, i.e., tensile region, are assumed to behave

in the same way as in the compressive region.

4.4.2 Parameter Evaluation

Since the uniaxial tensile strength of the soil used is

not available, the only way left for the estimation of parameter

"a" is by trial and error. With the assumption of parameter "a"

in equation 4.57, the plot of (1,3/I3 - 27) vs (Pa/ 11 ) on the

log-log scale can be drawn. The value of parameter "a" is picked

such that the best fitted straight line using this "a" value

passes through all the data points as shown In Figure 4.9. This

gives a - 0.544, q1 = 26, and m = 0.137. Then three steps are

followed to complete the parameter evaluation procedure.

a. Elastic Parameters

The unloading modulus Eur is measured from the experimen-

tal data curve and Eur/Pa vs a3/Pa is plotted on log-log diagram

for each CTC test. From the best fitted straight line, the slope
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defines the parameter n and the intercept with a3/Pa -1 defines

the parameter Kur, as shown in Figure 4.10. The constant para-

meter v is chosen as 0.2 through a trial and error process with

Kur = 490 and n = 0.95.

Kur and n are also calculated by using the unloading path

in the hydrostatic compression test. Due to the nonlinearity of

this relation, the incremental form of equation 4.4 is used to

give

dCv = dcI + de2 +d 3 = 3(I-2U) do3  (4.58)= -ur 

(4.5

Equation 4.58 is combined with equation 4.29 to give

dcv = 3(1-2u) (3)-n da3  (4.58)
Kur Pa Pa

Integrating equation 4.58 gives

V = (l-)Kur ( 3)-n (4.59)

or
o 00 3(1-2v) + (1-n) log (-) (4.60)

=( -n) Kutj  (1 n)O

Data points (Cv, a3/Pa) of the unloading path in the

hydrostatic compression test are plotted in the log-log coor-

dinate, Figure 4.11. The best fitted straight line has a slope

equal to (1-n) and an intercept 03/Pa = I equal to

3(1-2v)/[(1-n)Kur]. With the assumed Poisson's ratio, the value

of Kur and n can be found. The experimental data for the test

give Kur = 185, n = 0.252.
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Ideally, if this soil is isotropic the values of Kur and n

from the CTC test and isotropic compression test should be the

same. However, they are quite different. Because the soil sam-

ples were compacted vertically with an average stress of 60 psi

before triaxial tests, stress-induced anisotropy exists which

makes the vertical Young's modulus larger than the horizontal one.

Therefore the fact that the elastic Young's moduli evaluated from

CTC tests are larger than those from isotropic compression tests

is reasonable. In order to simulate the stress-strain relation

closely, a trial and error procedure is used to find out the

optimum values for Kur and n. Values of Kur and n are chosen and

the rest of the calibration procedure is followed until all the

parameters are evaluated. Then CTC test results are produced

numerically based on these parameters values. If these results

match those from the lab, the calibration is done. Otherwise new

values of Kur and n are chosen and the whole procedure is

repeated until CTC test results are predicted well numerically.

It was found that Kur=409 and n=O.95 gave the best results.

b. Plastic Collapsive Parameters

The stress path in the isotropic compression test only

induces the elastic and plastic collapsive strains while expansive

plastic strains are zero. Thus,

Cv - e + Cc (4.61)

or

cc - Cv - Ce (4.62)
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The collapsive volumetric strain can be used to obtain the

collapsive plastic work through the following equation

Wc = fo3 dec = I (a3 "AC ) (4.63)

The associated collapsive stress level, fc, can be expressed as:

fc = 1i2 + 2 12 = 3a32 (4.64)

Equation 4.34 can be written as:

log o (Wc/Pa) = 1o91oC + p log o(fc/Pa') (4.65)

The data (Wc/Pa, fc/Pa 2 ) can be plotted on a log-log scale as

shown in Figure 4.12 where the slope of the best fitted straight

line is the value of parameter P and the intercept with line

fc/Pa2 = 1 is the value of parameter C.

There is a great deal of difficulty in evaluating these

collapsive plastic parameters. If the values of C and P eva-

luated from the Isotropic compression tests result marked as "x"

points in the Figure 4.12 were used, the subsequent calibration

in step c will be impossible, because the variation of r12 is so

erratic that almost no function can be used to model it. After

picking several different values of C and P throughout the trial

and error procedure, the properly picked values of C and P are

represented by the straight line in Figure 4.12. Obviously, the

chosen relationship between Wc/Pa and fc/?a 2 is very much differ-

ent from the experimental observation. This is due to the fact

that horizontal Young's modulus is much smaller than the vertical

one.
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c. Expensive Parameters

The failure envelope parameters j and a were determined

previously in step a.

Next the plastic potential parameters S. R and t are eva-

luated through the following concept. By assuming

p

VP = A3 (4.66)

Ac1

then substituting expressions for Ac and Ac from equation 4.56

into equation 4.66 and solving for 172 gives:

1 1z I 1 27 03 (ai+VPc3) (4.67)

(Pall1)' [a3 (al+OVp3) - L_.3 m(l+P)]

I1

All the variables which appear in the above expression are

known for a given state of stress except VP . However the elastic

and collapsive strains are already known, the expansive plastic

strain can be derived by subtracting the Ace and Acc from the

total strain increment, Ac, measured in the CTC tests. vP and 12

can then be calculated for each stress level. This procedure

involves a great deal of calculation and is executed through a

computer program.

The variation of R2 as shown In kigure 4.13 can be modeled

by a simple expression

n2 = S fp + R VO-3/Pa + t (4.68)
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where

S = S1 + S2 V3l-a (4.69)

The measured slope for each approximated straight line with an

associated confining pressure is plotted in Figure 4.14 where the

intercept gives the value of S1 and the slope of that best fitted

straight line equals the value of S2 .

The intercepts in the Figure 4.13 and the associated

a3/Pa are replotted in figure 4.15 where the slope of best fitted

straight line offers the value of parameter R and the intercept at

Ca3/Pa = 0 gives the value of parameter t.

The work-hardening parameters p, I, a and A are evaluated

through the following process. The expansive plastic work at each

stage of the CTC tests is calculated from

Wp = f(a)T(deP) I (a, AC + 2 a3 AC ) (4.70)

as well as the value of fp from equation 4.41. These calculations

of Wp vs fp can be used to evaluate the values of Wp peak and

Wp60 where

Wp peak = the value of Wp at the peak point

and

Wp60 = the value of Wp at fp = 0.6q,

The parameters p and I can be evaluated by plotting (Wp

peak/Pa, a3/Pa) in a log-log scale as shown in Figure 4.16.
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Finally the parameters a and A are evaluated from the plot

of q vs a3/Pa in Figure 4.17

log10  Peak) - (1- WP60  log

Wp60  Wp peak tO

where q = (4.71)
log"0 (21.._)

fp60

4.4.3 Predictions of Triaxial Tests

All the 16 evaluated parameters are listed in Table 4.2.

Prediction of conventional triaxial and isotropic compression test

results using these parameter values in Lade's model are shown in

Figures 4.18, 4.19 and 4.20. Features like nonlinearity,

diliatancy and transition from a highly dilatant behavior for low

a3 to a highly compressive behavior for high a3 are reasonably

simulated and the agreement is pretty good. Since the Lade's the-

ory is based on an isotropic hardening rule, the unloading Is con-

sidered to be elastic. Therefore, the decreasing volume change

during unloading observed in the CTC test cannot be predicted

correctly. For monotonic loading, Lade's theory is a pretty sim-

ple and accurate model.

-- m m m m m m L----- m n m | '
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TABLE 4.2 -Lade's Elasto-Plastic Relation

Cohesion Correction a-P. 8 psi

Kur =409

ELASTIC n1 0.95

) =0.2

c - 0.000042
Collapsive

p = 0.922

P
Failure ni-26

L
E Envelope - 0.137

A__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

x
S S1 0.71

P
T Plastic S2 -- 0.1889

A
I Potential t -0.6

N
C R -- 2.0

S _______________ ______________

I p = 0.073

V Work f = 3.907

E Hardening a = 1.0

4= 1.4
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CHAPTER V

NUMERICAL MODELING

5.1 General

The numerical model mentioned in Table 1.1 Is a finite

element model based on small deformation theory and plane strain

conditions. Since the development of the finite element method in

the 1950's. numerous books have been written about the subject.

The availability of the high speed digital computer combined with

the development of sophisticated constitutive relations to describe

the properties of soil materials have made it possible to apply

the finite element method to the analyses of different geotech-

nical problems. In this chapter, only the important parts of the

numerical modeling procedure using finite elements will be

described.

5.2 Numerical Modeling Procedure

Since the results from centrifugal and numerical modeling

will be compared for the purpose of selecting a soil model, the

closer the simulation of numerical modeling to the centrifuge

model, the better the base of judgement. The simulation was

divided into three stages, starting with the soil preparation for

centrifugal model test, through the loading generated by the 5Og

gravitation field associated with 198 rpm rotating speed of the
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centrifuge, to the uniform surface strip loading applied under the

elevated gravity conditions. Those steps have been described in

sections 3.8 and 3.9.

In the first stage of the experiment, the soil mass with

uniform density is made under 1 g conditions. Then the tube is

buried in the soil trench, so the self weight of soil is applied

on the tube instantly. The above procedure is called the "gravity

turn on" procedure. This stage is simulated numerically by the

method of direct iteration as follows. The initial stress states

in all the elements in the finite element model are assumed to be

in the Ko condition. The corresponding stiffness matrix is then

calculated and is followed by the calculation of displacement vec-

tor under the load vector due to the parallel 1 g gravitational

force field. The load vector is derived as in the next stage and

given by Equation 5.10. The updated stress state is obtained and

is input for the next iteration. This iteration process is con-

tinued until the input and output stress states are sufficiently

close, indicating that convergence has occurred.

In the second stage, the gradually increased gravitation

force from 1 g to 50g is applied to the soil-culvert system as

shown in Figure 5.1. The direction in which gravity acts on each

element will be defined by specifying the ingle measured counter

clockwise from the positive y axis. To obtain the equivalent

nodal forces, the virtual work concept is employed. If a is the

centrifugal acceleration and the material mass density is pt then
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x

41

4!d

Figure 5.1 Analytical Modeling of Soil-Culvert System
in the Centrifuge
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the gravity force dF acting on the element volume dV is

dF = padV (5.1)

which acts in the direction away from the center of rotation. The

relation between centrifugal acceleration and angular velocity is

a = rw2  (5.2)

where r is the radius to the element under consideration. The

centrifugal acceleration can be expressed as follows

a = ng (5.3)

where g = 32.2 ft/sect (earth gravitational acceleration) (5.4)

and n is the gravity ratio and is chosen as 50 in this research.

Eliminating a from Equations 5.2 and 5.3 gives

n = -r (5.5)
g

Substituting Equations 5.3 and 5.5 into 5.1 gives

dF = pg ( r dVg

= dV (5.6)
g

where v is the unit weight under normal gkavity.
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The components acting in the x and y directions respec-

tively are

dFx dV sin e

Y r dV cos e (5.7)
dFy = -9 d

The virtual displacements u and v in the x and y directions

respectively are applied simultaneously to each node. Applying

the principle of virtual work results in the following expression

for the equivalent nodal forces Pxl and Pyi where I ranges from 1

to 4 in this case

Pxi u - fV (Ni u y war sin O)/g dV

Pyi v = -fV (Ni v y war cos O)/g dV (5.8)

where N i are shape functions.

Since equation 5.8 holds for any value of u and v, u and v

can be factored out to give

x = V (Niyw 2 r/g) sin e dV (5.9)
Pyl -Cos

For practical purposes, the integration shown in the above equation

is executed by the Gaussian numerical integration technique

resulting in equation 5.9 being replaced by

(s In e0 NUS NGtUS
P = (tYvW/g)

rY) Ni( n = I m = 1

r( n,nm) Ni(tn,qm)WnWmdet[J(tn,nm)] (5.10)
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where t is the element thickness, NGAUS is the number of Gaussian

points, [J] is the Jacobian matrix, and Wn,Wm are the Gaussian

weighting functions.

Due to the nonlinear behavior of the soil-structure inter-

action problem, the midpoint Runge-Kutta Incremental scheme is

used to simulate the selfweight loading from 1g to 50g in the

soil-culvert system. So far the construction procedure of the

centrifugal model has been faithfully simulated. If the material

constitutive law used in the numerical model is correct, then the

computed initial stress state before the external surface loading

should be very close to the condition existing in the centrifuge

model.

In the third stage the uniform surface loading is modeled

numerically with the equivalent nodal forces. A point load, P, is

applied to a node of the 4-node isoparametric plane strain element

with the local coordinate of the point, 4 = Zp and n = 1. The

principle of virtual work is applied again here with the virtual

displacement u and v in the x and y directions respective at node

1:

Pxi u = Px Ni(tp,l)u

Pyi v = Py Ni(Cp,l)v (5.11)

where Px and Py are the components of the point load p acting in

the x and y directions, respectively. Since equation 5.11 holds
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for any value of u and v, it is equivalent to

Pxi = Ni(Cp,l) 
(5.12)

kPyij P Y

where Ni are the shape functions which are used to relate the

displacements at nodes to that at intermediate points. Again, the

midpoint Runge-Kutta incremental scheme is used in the modeling of

this external loading where the number of load increments can be

specified by the program user.

The Gaussian integration scheme for the stiffness matrix

used in the previous three stages is applied with 2x2 full-inte-

gration for the soil elements and with 1x1 under-Integration for

the culvert elements. The importance of under-integration on

culvert stiffness is demonstrated in the following.

Four-node isoparametric elements are attractive because

they are simple and have only corner nodes. But in bending they

are too stiff. In Figure 5.2 the rectangular element with =

2x/L and q - 2y/H is given the prescribed displacements U. The

element is deformed in pure bending as shown in Figure 5.2(b)

because its sides must remain straight. Its deformation field is

given by

u = ut and v = 0 (5.13)

The correct shape under pure bending is shown in Figure 5.2(c) and

is expressed by

u = u t and v = L (1-,2) + V !- (i-n2) (5.14)
2H 2L
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Figure 5.2 A Rectangular Linear Element. Quadrilaterals Within the
Element Represent Initial and Deformed Shapes at Gauss
Points of a 2-by-2 Quadrature Rule (a) Undeformed Shape.
(b) Prescribed d.o.f. 5 Deform the Element in a Bending
Mode. (c) The Correct Shape of a Bean Segment in Bending.
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Equation 5.14 (from Cook. 1977) yields the correct value of shear

strain, yxy = 0, but equation 5.13 yields a nonzero shear strain.

The extra distortion due to shear is introduced by using this

4-node element so that this element becomes stiffer in the bending

mode. This effect is called shear locking or parasitic shear.

Its Influence is disastrous if the aspect ratio, L/H. is large

where L and H are defined in Figure 5.2. This is exactly the case

for the buried flexible culvert whose deformed shape suggests that

the bending mode is dominant. The aspect ratio used In the finite

element analysis in this work range from 25 to 50 depending on the

coarse or fine mesh layout. Therefore, shear locking Is expected

to play an important role In this soil and thin culvert system,

and under-integration on the stiffness of culvert elements Is uti-

lized.

5.3 Numerical Formulations for Constitutive Laws

5.3.1 Hyperbolic Constitutive Relations

The hyperbolic stress-strain relations were developed in

section 4.3 for use in nonlinear incremental analysis of soil

deformations. In each increment of such analysis the stress-

strain behavior of the soil is treated as being linear, which can

be expressed as follows for conditions of plane strain:

Aax  3B 3B+E 3B-E ol Ax
(AOy 9 8 3 3B-E 3B+E 0 I f Ae (5.15)
Arxy 9 0 0 El AYxy
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in which

B = Kb Pa ( ) (4.24)
Pa

E = 1- 1 (1-sin)(0 3) Kpa (_)_ (4.20)

2c cosO + 2 o3 sin Pa

for primary loading.
a n

Kur Pa _ (4.21)

Pa

for unloading or reloading.

The values of the eight parameters appearing in the hyperbolic

model are listed in Table 4.1.

Equation 5.15 is equivalent to Equation 4.5, and can be

obtained by substituting

E
0.5 - 6 (5.16)

into the latter.

The loading and unloading criteria are defined as

follows:

Primary loading, If a-73 > 1-o3) (B.1)

i (aj-3)fJ+1 [(al-a3) f t

Reloading & unloading, If [0103] F0  3 j (B.2)

I - current increment

I+1 = subsequent increment.
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5.3.2 Lade's Constitutive Relation

The numerical implementation of Lade's constitutive rela-

tions to solve boundary value problems has been quite limited so

far. Ozawa (1973) and Ozawa and duncan (1976) were the first to

apply the Lade's constitutive relation with one yield surface

(Lade, 1972) to a passive earth pressure problem by the finite

element method. The same work was further studied by Wong (1978)

and Evgin (1981). The latest version of the Lade's relation

(Lade, 1977) was first implemented by Aubry and Des Croix (1979,

1981). Lade and Nelson (1981 , 1984) published an explicit for-

mulation suitable for numerical implementation. Azevedo (1983)

used this kind of numerical formulation in a finite element code

to analyze excavations in sand.

In order to incorporate this constitutive model with two

yield surfaces in a finite element code. it Is necessary to deve-

lop an incremental stress- incrmental strain relationship of the

form

Ida) = [Cep] Idej (5.17)

where

(daT = (dax dOy daz dTxy dTxz dTyzj (5.18)

and

(dc}T = (dex dCy dez dyxy dyxz dyyz) (5.19)
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Each of these two yield surfaces is assumed to produce

plastic strain increments whose sum, together with the elastic

strain incrments, makes up the total strain increments

Idel = Idee+ (dccl + (deP) (4.28)

The incremental form of Equation 4.3 gives the relation

of incremental elastic strain and incremental stress:

{da) = ICe] (dee} (5.20)

For the work-hardening material, the yield functions of

collapse and expansive plastic strains are expressed as

Fc (a, Wc) = 0 (4.31)

and

Fp (1o), Wp) = 0 (4.40)

respectively. The consistency condition states that loading from

a plastic state must again lead to another plastic state, which

means that

Fc + dFc = O, Fp +dFp = 0 (5.21)

Eliminating Fc and Fp from Equations 5.21, 4.31 and 4.40, we

obtain

dFc ({), Wc) = 0 (5.22)

and

dFp ((o}, Wc) = 0 (5.23)
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The flow rules used for collapsive and expansive plastic

strains are

a3gc

(decl k {J AC )O (4.36)

and

(dePj k ~- p) (4.50)

respectively.

Equations 5.22 and 5.23 can be expressed in the following

forms:

I dal . (TC1 T (dec) = 0

(5.24)

(aPT(dial (app T (dePI =0

8a a

From Equation 5.20 and 4.28:

(da) = [Cel (Ide) - idec) - jdcPj) (5.25)

Substituting Equation 5.25 Into Equation 5.24 gives:

8 Fc T [Cej ((Ide - (decl - (cicP)) - 8c I Idc) = 0

(5.26)

FlT[Ce] ((del - Idcc) - IdeP?) + laPI Idcv) = 0

Equation 5.25 can be represented by using Equations 4.36 and 4.50
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aFC - aggc aT FcT =g
{-j [Ce ] (1de -- Rp 8Q1 ) + '8"*c (_- c =0

(5.27)

aFp T agc}) !!p ,(

[Ce](Ide) - Xc { -) - Xp L{ _ T a p = 0

These equations may be written in matrix form as

[ ]T [Ce] ((del-[zI)) [D] fx) 1 0) (5.28)

where

fAI !Fc) + T

[8a1 8x2  Ic) (!-g-2 (5.29)

(ac)8x2  j.- -6x1 ac 6x1 5.0

2x1 p(5.31)

and

IF c ITIg c ){ac }o aa-

[D12x 2 = a(P T (agp (5.32)

From Equations 4.31 and 4.35

(_c . ..c.l = LS (a) (5.33)
acC aec awc

where fc is a function of Wc only.
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Similarly, from Equations 4.40 and 4.51

fp a. .= -acp- aw,( 4

where fp is a function of Wp only.

[D] can be expressed in the following form:

afc 0,TI agc
aw 3

(D]2x2  =,, (5.35)
fP T agp,

3a B
o ~aw- °  --

Similarly Equation 5.29 can be rewritten as follows

r [T - afT .afc T (5.36)

'~2x6 30c haa

where fc and f; depend on stress only.

Equation 5.28 may be written as:

faf TCel D)X [A r [ce] (de) (5.37)

or

t[L11 [LJT (Cel {ide (5.38)

, 8a
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in which

[L]2x2 LaJ - [ D] (5.39)

From Equations 5.25, 4.36 and 4.50

(dal = [Ce] ({del - [A-j (A)) (5.40)

Substituting Equation 5.38 into Equation 5.40 gives:

idal = ([Ce] - [Ce] [U] [L] - 1 [1]T [Ce]) (de) (5.41)

Thus

[Cep] = [Ce] - [Ce] [L]- [ce] (5.42)

or

[Cep] [Ce] - [C e l (_c I (bcIT+ {agP Ibp)T) [Ce]

A To aa
(5.43)

where A = LI, # L2 2 - L12 * L2 1  (5.44)

ar
(bcl - L22 . 1aI - L12  ( {8 I  (5.45)

afl afc

bpj - L-I, I - L21 {- - (5.46)

--Ii m • • Il
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ax

'7y
af agc a

= = 2 2T~y (5.47)
2TyZ

13 - (a c0z - T 2Z) I,

313 - (az aX -T 2X) Il

2f i 313 - (ax ay -Tx2y) Il 3

aa 2 a 2 (aZ TXy - TZX TyZ) 11 13 P. F. 0
3

2 (ay TZX - TYZ Txy) Ii 0

2 (aX Ty: - TXy Tzx) 11 0

(5.48)
and

2
ay az Tyz 1

2

agp =-2 a) y~ ~ xy xy 2 13 Pa m

=-(7 q (1 2 (aZ TXy - TZX TyZ) +(314j-l 2 (11) 0

2 (aYy TZX -
Tyz Tx) 0

2 (aX Tyz - Txy TZX) 0

(5.49)

From Equations 5.39 and 5.35

L fC T (C]agc afc a T (ag 0
= ~ ~ 8 {a-I (C]aa~-(~( (5.50)
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afp T 8gp, afp TOg(5.p)

L22 = -- e aw (.-I.)

L arc T agp (5.52)12 = - Ce] --.

=arp T agc (5.53)

L21 = 80 "  c } {- -1 .3

Using Equation 4.38

fc Pa (fc) i-P (5.54)

aW~ CP p2
a

from Equation 4.54

=f fp 1_q p-b) (5.55)

Thus, the implementation of this incremental procedure

can be carried out by using those equations from 5.43 to 5.55.

i l id-AL.



CHAPTER VI

COMPARISON BETWEEN CENTRIFUGAL AND ANALYTICAL RESULTS

In this chapter, comparisons are made between the centri-

fuge test results and analytical results obtained from the finite

element analysis. The accuracy of the finite element program used

is first demonstrated by using it to analyze a boundary value

problem that has an exact, closed form solution.

6.1 Verification of Analytical Model

The boundary value problem chosen for verification of the

finite element program Is shown in Figure 6.1. It consists of a

linearly elastic soil mass loaded in plane strain conditions by

its self weight as in a centrifuge. The loading considered acts

only in y-direction is and therefore by the unit weight of the

soil as

= yg (6.1)

where w - angular velocity = 198 rpm

g = earth's gravity = 32.2 ft/secz

,g= unit weight of soil under earth's gravity

y - radius to point under consideration.
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For this analysis, it is assumed that yg acts in the y-

direction. The close form solution to this problem is given by

A (-y3 6 3L~y -
3 LZ +Lj) (6.2)

y - (L2  - y2 ) (6.3)
Y 2

a = g a  (L2  - y2) (6.4)
2g I

(l+v)kl-2v)ygwz

where A =
E (1-) g

L, = -41 inches

L, = -53 inches

v = displacement in the y-direction

E = Young's modulus = 2500 psi

v = Poisson's ration 0.3

This problem is also analyzed by a finite element method

in which the continuum is modeled by one 4 node element with the

same boundary conditions. The comparison between the close form

solution and finite element solution is listed in Table 6.1.

The acceleration force is correctly simulated in the

finite element code. The stress and displacement are almost the

same as the true solution with error 2.2% and 4.5%, respectively.

This discrepancy arises because the displacement field is modeled

by bilinear function whereas the true displacement is cubic func-

tion as shown in Equation 6.2. To prove this, another problem is
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considered. A close form solutions of the same continuum (but

weightless) with a linear elastic constitutive law under plane

strain, no side friction, and uniform surface loading conditions

(Figure 6.2) are expressed in the following

p(l+))(1-2V) (y _ L2 ) (6.5)

E (1-v)

Sy= p

p +V)(1-2u) (6.7)Cy =p E (0-0)

Equation 6.5 is linear function which can be correctly

modeled by the bilinear shape functions of 4 node quadrilateral

elements. The comparison between the true solutions and numerical

solutions is shown in Table 6.2. The stresses and displacements

are exactly evaluated by the finite element method. Therefore,

the analytical model with linear elasticity is correctly

established.

The hyperbolic and Lade's relation implementations are

checked next. First, a stress-controlled program for each consti-

tutive relation is developed. The prediction from these program

for CTC tests are pretty good except that the hyperbolic model can

not catch the dilatant behavior as shown in Figures 4.4, 4.5, 4.18

and 4.19. Furthermore, Azevedo (1983) checked the similar

algorithm by comparing the solution from a stress-controlled pro-

gram with the solution from finite element program for the plane



163

P=15 Ps

lb lb

60 60

12

8

Figure 6.2 Idealized Problem II

.1 ....



164

0,

-44

in
I

U
-c4

4 

CD

0 C.,Cf

in 
0 0

I0

0.0

€lu

00

Lw

In 
0

0 >

ca



165

strain triaxial compression. The agreement is very good, thus

leading to the conclusion that the analytical models were properly

implemented.

6.2 Convergence Studies

Two studies were carried out to investigate the con-

vergence of the numerical solutions. Firstly, to study the influ-

ence of the mesh size on the accuracy and stability of the

numerical solution, three meshes with progressively smaller ele-

ment size and increasing degree of freedom were used to analyze

the buried culvert. Secondly, the number of load increments used

to obtain the nonlinear solutions of hyperbolic and Lade's models

was progressively increased with the same mesh configuration in

order to see if the convergence could be achieved.

Mesh 1 with 43 elements, mesh 2 with 76 elements, and mesh

3 with 122 elements are shown in Figures 6.3, 6.4 and 6.5, respec-

tively. The deflections at the crown and the springline used to

study the convergence of the analysis with the hyperbolic soil

model are shown in Figures 6.6 and 6.7, respectively. Monotonic

convergence to the true solution is obvious. Similarly, Figures

6.8 and 6.9 show the same feature of monotonic convergence of the

analytical solutions with Lade's soil model.

To study the influence of the number of load increments,

2, 8 and 16 load increments were used for mesh 3. Figure 6.10

shows the relation between the deflection at the crown and the
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load Increment. The more the number of load increments, the

stiffer the soil-culvert system. This seems to contradict what is

expected, i.e.. softer behavior with more increments. The reason

for this Is the key in this study and is explained as follows.

The horizontal stresses are smaller than the vertical

stresses due to self weight loading in the soil-culvert system

before the surface loading is applied. During surface loading.

the horizontal stresses In the region shaded in Figure 6.11

increase at a higher rate than the vertical stresses. This type

of stress path will only generate collapsive plastic strain in the

Lade's soil model with only the cap-type yield surface (Figure

4.7) being activated. The predicted collapsive plastic volumetric

strain by Lade's constitutive relation is much smaller than the

real value as shown in Figure 4.20. This is because the soil pre-

pared by static compaction possesses very high anisotropy which

causes the soil to be softer when the applied major principal

stress is acting perpendicularly ot the direction of compaction

(Budiman, 1985). However, since Lade's constitutive relation can

only deal with Isotropic materials, it was calibrated by using

laboratory test results obtained from the CTC test in which the

major principal stress acts in the same direction as soil compac-

tion during sample preparation. The use of the constitutive rela-

tion thus calibrated results in very small collapsive plastic

strain in the shaded region in Figure 6.11, so that the soil-

culvert system becomes stiffer during the surface loading stage.
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That Is why "the more number of the load increments, the stiffer

the soil-culvert system". The sane phenomena are observed in the

analytical solution with hyperbolic soil relation, i.e.,

Aa3  03 (6.8)
A91  al

where a, and 03 are the stresses before the surface loading, and

Aa1 and A03 are Incremental stresses during the surface loading

stage. By applying the loading and unloading criteria (Equations

B.9 and B.1O) the unloading or reloading Young's modulus is acti-

vated. Those shaded elements with higher stiffness during surface

loading stage pose like a constraint which explains the fact that

the soil-culvert system becomes stiffer numerically during surface

loading. The above comment indirectly demonstrates that the con-

vergence study on the load increment is correct. To prove this

directly, an unconfined compression tests with plane strain boun-

dary condition were simulated with Lade's and hyperbolic constitu-

tive relations. Continuous hardening behavior was observed while

the load increment was increased. Therefore, all the above

description demonstrates that the convergence studies of these

analytical solutions are valid.

6.3 Comparisons Between Centrifugal and Analytical Results

The importance of under-integration in computing the

stiffness response of a flexible, buried tube is demonstrated

first. The crown of the tube deflects linearly regardless of the
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type of nonlinear soil model If the full-integration of stiffness

matrix Is used. This Is shown In Figure 6.12. Due to the shear

locking, the tube Is hardly deflected In the numerical analysis.

Figure 6.12 also shows that the deflection calculated with the

under-Integration technique is a more reasonable solution than the

value from full-integration. Next, the deflection curve predicted

by linear elasticity shows the Importance of choices of E and v.

In this study, we assume the true solution is given by the results

of the centrifuge test. By adjusting the values of E and V. a

reasonable solution could be obtained that would match the centri-

fuge results. In reality, however, the true solution for each

different boundary value problem Is unknown. The proper selection

of E and V to match the solution, therefore, also becomes

Impossible. The use of linear elasticity to represent soil behav-

ior is not realistic. Therefore, only the analytical methods with

hyperbolic and Lade's constitutive relations for soil and with

under-integration scheme will be demonstrated from now on.

6.3.1 Symmetrical Loading

The mesh shown in Figure 6.5 was used in analyzing the

symmetrical loading case. The predicted deflections of the buried

culvert from using the analytical methods with hyperbolic and

Lade's constitutive relations, together jith centrifugal test

results under 10, 20, 30 and 40 psi surface loading, are shown in

Figures 6.13, 6.14, 6.15 and 6.16, respectively. Except at the

Invert, the analytical methods always underestimate the deflec-

tion. The analytical solutions from the hyperbolic soil relation

I
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show better results than that from Lade's soil relation. The

important features like the largest inward deflection at the crown

and outward deflection at the springline have been correctly pre-

dicted. The deflection curve at each point along the circum-

ference of the tube is very similar to those at the crown (iigure

6.12) except for different magnitudes of deflections.

The hoop stresses calculated by both soil models under the

self weight loading at 50g are very similar, with the largest hoop

stress at the haunch and the smallest at the crown as shown in

Figures 6.17 and 6.18 where compressive value is plotted inside

the tube. The centrifugal test data for the hoop stresses are not

available due to problems with the strain gauge amplifiers. Under

the surface loading of 10, 20, 30 and 40 psi, the corresponding

hoop stresses are drawn in Figures 6.19 and 6.20 for both soil

models. The largest hoop stress are found at the shoulder and the

smallest at the invert. Again, the results are very similar.

However, the centrifugal test results in Figure 3.31 show com-

pletely different hoop stresses from those two analytical solu-

tions. The solutions from the centrifuge tests were believed to

be wrong although all the gauges have been checked to function

correctly. The following explanation is offered. To protect the

gauges from the penetration of sand graia, a circumferential strip

of soil, 0.18" width and running half way around the tube from the

crown to the invert, was removed (Step 7, section 3.8). This is

shown in figure 6.21. This eliminated the contact between the

soil the gauges, preventing any damaes of the latter from impinge-
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sent by the soil grains. However, In retrospect, because these

gauges are now located at areas of the tube that are not loaded by

soil, a peculiar stress and strain state exists at these gauge

locations which is reflected by meaningless strain gauge data.

When this problem with the data was discovered several months

later, an attempt was made to repeat the same tests but with bet-

ter soil conditions at the gauge locations. It was discovered

that the aging in the gauge epoxy has caused deterioration which

made the gauges to malfunction. Henceforth, the attempt to

acqulre better data was abandoned.

6.3.2 Unsymmetrical Loading

The whole mesh in Figure 6.22 was used to analyze the

behavior of buried culvert under unsymmetrical loading. The de-

flected shapes of the tube from the centrifuge test and the ana-

lytical solutions under 10, 20, 30 and 40 psi surface loading are

shown in Figures 6.23, 6.24, 6.25 and 6.26, respectively. All the

deflections are underestimated by both analytical solutions, while

the analytical solution with the hyperbolic soil model shows bet-

ter results than that with Lade's soil model. The largest inward

deflection occurs at the shoulder which is on the same side of the

surface loading. The largest outward deflections are located at

the shoulder on the opposite side and at the haunch on the same

side. These features are correctly predicated by both analytical

solutions.

I m I • N mmi 'N N N l
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The hoop stresses predicated by the analytical solutions

with hyperbolic and Lade's soil models under surface loading are

very similar as shown in Figures 6.27 and 6.28. The distribution

of hoop stresses around the tube is rotated counterclockwise from

the case of symmetrical surface loading. During this experiment,

the gauged tube was accidentally overloaded by an excessive sur-

face pressure and was destroyed by buckling failure. rhe buckled

tube is shown in Figure 6.29.

6.4 Discussion of the Results

Due to the uncertainty in the strain measurement as

explained in Section 6.3.1, the deflections of the culvert were

used to study the suitability of hyperbolic and Lade's constitu-

tive relations in the analysis of the buried culvert system. Both

analytical aolutions predict the shape of the deflected culvert

very well, however, the magnitude of deflection is always underes-

timated except at the invert in either the symmetrical or unsym-

metrical loading case. This phenomenon can ue explained In terms

of the stress path experienced at each location along the circum-

ference of the tube. The stress paths in the three elements shown

in Figure 6.11 are used for the following demonstration.

The soil element C under the invnrt of the buried tube

experienced a stress path similar to the one in the CTC test as

shown in Figures 30 and 31. The stress-strain relation in the CTC

test results can be simulated very well by both soil models, as

shown In Figures 4.4 and 4.18. Therefore, the deflection at



Figure 6.29 ERickling Failure of the Flexible Culvert
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invert is also very accurately predicted by both soil models

(Figure 6.32).

At the springline and the crown the deflections are under-

estimated in both soil models. The underestimated deflection at

the crown is caused by the underestimated deflection at the

springline. The stress paths experienced in the soil elements in

the region between the springline to the vertical boundary offer

the clue to explaining the discrepancy on the deflections.

First, the analytical solutions with a hyperbolic soil

model are studied. The major principal stresses in the shaded

elements in Figure 6.11 are acting in the vertical direction

before the surface loading. During the surface loading these

major principal stresses gradually rotate 90* to align with the

horizontal direction. The corresponding stress path implies that

the incremental stress ratio due to surface loading is larger than

the total stress ratio before the loading. According to the load-

ing and unloading critera In Equation B.IO, either unloading or

reloading is activated. This Is proved by the fact that the

stress level is decreasing at the element A and B. Thus the

unloading Young's modulus is chosen for those elements. This

makes the stiffness of the soil-culvert system too high. These

stress paths with total stress ratio ranging from 0.4 to 0.8 can-

not be predicted well by the hyperbolic soil model (Lade, 1972).

The strains predicted for primary loading are too large and those

for unloading and reloading are too small. Since unloading and
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reloading are induced In those shaded elements in Figure 6.11 the

whole system is too stiff and therefore the deflection at the

springline is underestimated. If the primary loading criterion.

instead of unloading, is imposed on those elements the predicted

deflection at the crown is Improved but is still underestimated as

shown in Figure 6.33. This discrepancy is a result of the ani-

sotropy of the soil which is compacted vertically in layers. The

strain response caused by rotating the major principal stress from

the vertical to the horizontal shows progressively decreasing

stiffness (Sture, Ko, Budiman and Ontuna, 1985). Therefore, the

soil near the springline will deform a lot more than the predic-

tion which is based on Isotropic soil properties. The application

of a hyperbolic soil model on the buried, flexible culvert with

the backfill soil being compacted in layers will not be satisfac-

tory because of the anisotropy of the soil and the stress paths

experienced by the soil which cannot be predicted by this soil

model.

Second, the analytical solutions obtained from Lade's soil

model are studied herein. The stress paths induced in the shaded

elements (Figure 6.11) during surface loading will only activate

the cap-type yield surface. This can be explained by the stress

paths of the elements A and B in Figure 31. Lade's constitutive

relations are derived under the assumption of isotropic materials.

However, the soil used in the centrifugal modeling is anisotropic.

This can be proved by the fact that the predicted volumetric

strains are much smaller than the measured values In the isotropic
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compression tests when the parameters 
calibrated from the CTC

tests are used (Figure 4.20). Lade's soil model predicts the CTC

test results very well, as shown in Figures 4.18 and 4.19. Since

the collapsive plastic strain is so small that the stress-strain

relations behave like unloading and reloading when only the cap

yield surface is activated. While the surface loading gradually

increases to 40 psi the shaded area with the abnormal high stiff-

ness will move toward the vertical boundary at a slower speed than

In the hyperbolic soil model. Therefore, the calculated deflec-

tions from Lade's soil model are always smaller than those from

the hyperbolic model. In view of the above argument, Lade's

Isotropic soil model Is not suitable for the analyses of flexible

culverts buried In a layered compacted soil. The more flexible

the culvert, the larger the passive zone around the springline.

Then the anisotropy plays a more important role.

Those comments mentioned in connection with the symmetri-

cal loading case also hold for the unsymmetrical loading. Figure

6.34 shows the shaded elements where only the cap yield surface is

activated. The softer area is located at the haunch on the left

hand side of the tube where the calculated outward deflection is

the largest and this Is proved by centrifugal test results as

shown in Figure 6.26. In the analytica1 model the stiffer area

resides at the shoulder on the right hand side, where the deflec-

tion Is underestimated again. Therefore, an anisotropic soil

model with the ability to incorporate the principal stress rota-

tion is required to account for the directional soil stiffness.
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culvert. On the other hand, the culvert behaved linearly regard-

less of what type of nonlinear soil models if full-integration was

applied.

4. The hyperbolic and Lade's constitutive relations

through the aid-point incremental algorithm could simulate the

hardening or stiffening system.

5. The hyperbolic relation was able to represent the

stress-strain behavior but not the dilatant behavior in the test

soil. Lade's relation could simulate both aspects fairly well.

6. Due to the fact that the behavior along some stress

paths was poorly predicted by the hyperbolic soil model and to the

inability to represent the anisotropic behavior, the analytical

solution with the hyperbolic relation underestimated the deflec-

tions along the circumference of the tube except at the invert.

7. Lade's constitutive relation could not represent the

anisotropic behavior with its soil parameters obtained from cali-

bration with CTC test results. The predicted culvert deflections,

therefore, are always smaller than the measured values except at

the invert.

8. The accuracy of the predictod deflections from hyper-

bolic relation was slightly better than that from Lade's relation.

But the simplicity of the hyperbolic model and the much shorter

computer runtime gave this model an advantage over Lade's relation
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in this study. Especially when no other models are available, the

improved hyperbolic soil model can predict the deflections fairly

well and with less expense in the computation.

9. To properly portray the rotation of the major princi-

pal stress in the soil adjacent to the culvert's springline, an

anisotropic soil model with the ability to represent the rotation

of principal stresses is required in order to have an accurate

prediction on the behavior of a buried culvert.

7.3 Recommendations for Future Work

The experience gained in this study led to the following

recommendations for future work in this line of research.

1. Amplifiers and signal condition modules with high

quality are essential for producing repeatable and stable signals

under a high gravitational field. With such improved instrumen-

tation, the induced strains in the culvert under selfweight In the

centrifuge could then be measured.

2. The application of a soft, protective material, such

as Play-Doh, around the strain gauges along the interface between

the soil and the structure is important to protect the gauges

against the penetration of sand grains; and to model the

constrained condition of the buried structure In order to have the

correct information from the strain gauges.

_ • nmamulnlnmnmlnn n
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3. Other constitutive models, such as the bounding sur-

face model, with the ability to account for the rotation of prin-

cipal stresses may be necessary to analyze a very flexible tube

buried In a transversly Isotropic soil.

4. The utilization of a 9-node Isoparametric element to

represent the soil and the culvert provides the ability to model

the curved geometrical shape inherent in a culvert system.

5. The utilization of curved beam elements for the

culvert may have better performance than the 4-node and 9-node

elements. Data manipulation to obtain the bending moment can then

be avoided.

6. Similar modeling, both centrifugal and numerical, of

rigid tubes and the application of dynamic loading is possible and

warrants pursuit.
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CHAPTER VII

SUMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

The complex problem of the reaction of a buried culvert to

loads applied at the ground surface is studied by analytical

modeling and centrifugal modeling. The Increased body forces in

the centrifuge can correctly reproduce the initial stress state of

an earth structure whose response is mainly governed by the self-

weight induced stresses. Under well controlled conditions.

centrifuge modeling can offer accurate data to validate the

constitutive relations used in the analytical method.

The principal objective of this study was to investigate

the suitability of the hyperbolic and Lade's constitutive rela-

tions in the analysis of a buried culvert. A sandy silt was util-

ized and its stress-strain and strength characteristics were

determined by conventional soil testing. The same soil was used

in the centrifugal modeling test in which a gauged tube was loaded

by symmetrical and unsymmetrical loads. The induced strains and

displacements were measured at the midsection of the tube.

A finite element code was written to simulate the con-

struction of a soil-culvert system outside the centrifuge and the
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gravitational field in the centrifuge. Linear elasticity was used

to model the tube while the hyperbolic and Lade's constitutive

relations were implemented to model the soil.

Based on the soil test results, the constitutive relations

were calibrated and used in the analytical model. The analytical

solutions were compared with the results obtained in the centrifu-

gal model. It was found that the behavior of the buried tube was

predicted well enough qualitatively but not quantitatively.

7.2 Conclusions

Based on the above studies, several conclusions can be

drawn.

1. Consistent reproducibility of centrifuge test results

indicates that strain gauge and LVDT instrumentation performed

satisfactorily. The preparation procedure for the soil-culvert

centrifuge model was satisfactory except that the strain gauges

should have been in full contact with the adjacent soil.

2. The finite element code was found to perform satisfac-

torily under the monotonic convergence tests with the refined

meshes and increased number of load increments.

3. Under-integration was essentilA for the 4-node quadri-

lateral elements which were used to model the flexible, buried
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APPENDIX A

Centrifugal Test Results

1
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D3PLRCEM EI4 ( £ncn-e ' FAR :,YMMET.._ LJ'DIH(

I 21)ps1 30ps 40pi±
1 -0.015405 -0.040807 -0.067958 -0.110469
2 -0.009392 -0.025809 -0.044920 -0.075536
3 -0.00186 -0.004655 -0.007343 -0.009983
4 0.001200 0.004101 0.006902 0.011003
5 0.003320 0.009792 0.016944 0.028467
6 0.004539 0.012525 0.022740 0.038597
7 0.004943 0.014760 0.023985 0.038501
8 0.003379 0.009649 0.015187 0.022909
9 0.002749 0.007473 0.012538 0,019692

10 0.003488 0.008919 0.013079 0.017826
11 0.002790 0.007123 0.010326 0.013577
12 0.002177 0.005522 0.007976 0.010486

30psz 20psi lOpsi Opsi
1 -0.111176 -0.107735 -0.101928 -0.090517
2 -0.075762 -0.072830 -0.068516 -0.061191
3 -0.009699 -0.008511 -0.008218 -0.009206
4 0.012004 0.011804 0.010200 0.007401
5 0.029116 0.0281362 0.027247 0.023763
6 0.039224 0.033426 0.036622 0.033349
7 0.038843 0.037901 0.036143 0.032890
8 0.022873 0.021901 0.020967 0.019366
9 0.019430 0.013571 0.017754 0.016901

10 0.017479 0.016530 0.015781 0.014520
11 0.013136 0.012449 0.012056 0.011439
12 0.009980 0.009239 0.003844 0.008348



221

HOOP STRESSES (psi) FOR SYMMETRICAL LIDHDING

lOpsi 20psi 30psi 4 0psi
1 364.31903 647.91372 993.07051 1515.66240
2 365.95433 637.93055 1037.33026 1602.34387
3 -63.37096 -214.11593 -355.25302 -1318.62629
4 -870.43527 -2048.65818 -3751.32037 -6429.33413
5 -39.20840 -23.13563 -67.79976 -157.13244
6 -870.15870 -2437.96839 -3981.85337 -6297.72763
7 455.01387 1120.75446 1803.02483 2669.83523
8 123.76207 392.74257 827.05744 1698.09270
9 -213.31000 -275.17937 -255.82715 -23.33279
10 -133.40577 -272.83018 -404.91715 -514.54865
11 -46.62773 140.72828 340.84332 672.40434

30psi 20psi lOpsi Opsi
1 1391.31046 1184.30650 879.99442 333.43253
2 1500.60783 1300.92191 988.50310 455.62252
3 -1651.50179 -1872.64272 -2123.33530 -1990.64841
4 -6512.40247 -6204.63673 -5628.25049 -4576.07184
5 -50.91346 35.39955 103.42415 197.10466
6 -6134.52087 -5745.23223 -5159.18277 -4423.38332
7 2655.80861 2576.06372 2355.32414 194.97280
8 1739.61205 1708.14951 1678.12761 1650.81632
9 27.86890 -3.07624 34.43615 107.53026

10 -393.83613 -280.40152 -152.98573 -18.99501
11 733.90408 765.21964 806.28124 841.07928
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MOMENT (lb-in) FOR SYMMETRICAL LOADING

lOpsi 20psi 30psi 40psi

1 -0.33727 -0.77293 -1.18533 -1.83726
2 -0.09490 -0.28327 -0.58742 -1.20315
3 0.03203 0.07617 0.12824 0.31117
4 0.07750 0.13476 0.35090 0.61409
5 0.06286 0.21367 0.36349 0.52804
6 0.06548 0.18961 0.32166 0.51995
7 -0.03042 -0.03988 -0.14778 -0.21780
8 0.02014 0.01695 -0.00092 -0.05433
9 0.02019 0.02765 0.02699 0.00785
10 0.01156 0.03101 0.04633 0.06121
11 -0.00043 -0.03053 -0.05393 -0.09310

30ps 20psi lOpsi Opsi
1 -1.87020 -1.85668 -1.81124 -1.59073
2 -1.25143 -1.21031 -1.12603 -0.93780
3 0.33676 0.34468 0.34750 0.27293
4 0.60909 0.56989 0.50581 0.39282
5 0.56388 0.57699 0.59191 0.61555
6 0.50336 0.46617 0.40988 0.34192
7 -0.22242 -0.21707 -0.20201 -0.16943
3 -0.07423 -0.08672 -0.10418 -0.12434
9 0.00040 0.00210 -0.00384 -0.01272

in 0.05071 0.04114 0.03107 0.02126
11 -0.09818 -0.1U045 -U.1U333 -0.10745
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EURIED CULVERT "E2- -E% UI_7S UtNDER S') :N -, E; T Utj,,E

1 -0.0001O731 -0.01''1'L!52 -0.0l0E,77"1; 0U11;;

2 1.00023487 0.00052600 0.0U080662 0.00ul2872
3 -0.00003554 -0.00013179 -0.00030002 -0.00064856
4 0.0000825 0.00022280 0.00043528 0.00085749
5 0.00001591 0.00003372 0.00005710 0.0O00fl878
6 -0.00002418 -0).00006163 -0.00010342 -0.00028072
7 -0.00000824 -0.00001793 -0.00002495 -0.00003482
8 -0.00010526 -0.00024920 -0.00046419 -0.00080351
9 0.00003678 0.00013222 0.00022308 0.00032025

10 -0.00004190 -0.00013524 -0.00023192 -0.00034074
11 -0.00001575 -0.00004027 -0.00005828 -0.00008516
12 -0.00009771 -0.00027762 -0.00046092 -0.0007'601
13 0.00001063 0.00001681 0.00002506 0.00003775
14 0.00004870 0.00012933 0.00021004 0.00031038
15 0.00002067 0.00003621 0.00005335 0.00007671
16 -0.00000454 0.00001500 0.00005450 0.00014471
17 -0.00000127 -0.00000064 0.00000021 0.00000339
18 -0.00002654 -0.00003525 -0.00003357 -0.00000643
19 -0.00000146 0.00000162 0.00000260 0.00000476
20 -0.00001593 -0.00003720 -0.00005540 -0.00007186
21 -0.00000331 -0.00000993 -0.00001153 -0.00001443
22 -0.00000277 0.00002828 0.00005598 0.00010211

30psi 20psi lOpsi Opsi
1 -0.00107981 -0.00103484 -0.00107625 -0.00097386
2 0.00126123 0.00123927 0.00119099 0.00101734
3 -0.0006854t -0.00067269 -0.00064031 -0.00055725
4 0.00088108 0.00084232 0.00076920 0.00061666
5 0.00010310 0.00009364 0.00007906 0.00004164
6 -0.00031844 -0.00033782 -0.00035592 -0.00030060
7 -O.tUOO04337 -0.00004783 -0.00005036 -0.00005248
8 -0.00080580 -0.00076120 -0.00068351 -0.00054420
9 0.00034960 0.00036343 0.00037721 0.00039311
10 -0.00035624 -0.00035882 -0.000363/2 -0.00037211
11 -U.00008490 -0.00008290 -0.00007982 -0.00007438
12 -0.00071499 -0.00066633 -0.00059289 -0.00050239
13 0.00003394 0.00003209 0.00002712 0.00001750
14 0.00031235 0.00030381 0.00027999 0.00022959
15 0.00006696 0.00005709 0.00004420 0.00002980
16 0.0001598? 0.00016564 0.00017461 0.00018545
17 0.00000207 0.00000111 -0.00000016 -0.00000095
18 0.00000157 -0.00000151 0.00000465 0.00001437
19 0.00000606 0.00000747 0.00000947 0.00001207
20 -0.00005741 -0.00004403 -0.00002942 -0.000074t5
21 -0.00001360 -0.00001298 -0.00001210 -0.0000'241
22 0.00010930 0.00011276 0.00011724 0.001312202
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BURIED CULVERT TEST R .SULT S UNDER 5Og IN THE CENTRIFUGE

DISPLACEMENT (inches) FOR UNSYMMETRICAL LOADING

lOpsi 20psi 30psi 40psi
1 -0.014183 -0.042129 -0.037248 -0.164064
2 -0.016942 -0.047745 -0.096336 -0.181091
3 -0.008046 -0.023281 -0.047692 -0.092017
4 0.001200 0.004101 0.006902 0.011003
5 0.001644 0.003941 0.007619 0.012785
6 0.003488 0.012763 0.012891 0.013002
7 0.005520 0.016446 0.033496 0.058432
8 0.006116 0.016027 0.032441 0.057321
9 0.002257 0.006331 0.011331 0.016635

10 0.003686 0.009394 0.017543 0.028316
11 0.002358 0.006258 0.010961 0.015265
12 0.001385 0.004120 0.007322 0.009810

30psi 2 0ps1 lOpsi Opsi
I -0.17R505 -0.176051 -0.168349 -0.154886
2 -0.194933 -0 112794 -0.185769 -0.170977
3 -0.099315 -0 .09766 -0.093257 -0.086074
4 0.012004 0.011804 0.010200 0.007401
5 0.013608 0.013568 0.013260 0.012008
6 0.013015 0.013000 0.013012 0.013041
7 0.061776 0.060947 0.059089 0.056380
8 0.060706 0.060116 0.058543 0.056761
9 0.017087 0017026 0.016458 0.015478
10 0.029479 0 .-09 2 0.028506 0.027915
11 0.015534 0.015618 0.015326 0.014974
12 0.009835 0.010193 0.009944 0.009774



APPENDIX B

The loading and unloading criteria used in the hyperbolic

constitutive relation are defined as follows

Primary loading, If Ll01--o)3f1 > al-3 (B.1)
(ol-a3)( 1-fj

1+1i

Reloading and unloading, if [(1_3 1 [-13)f] (B.2)
1+1 

t

where I - current increment

I + 1 = subsequent increment

(al-03) = failure stress difference

However, the physical meaning of these criteria is diffi-

cult to interpret. Another way to represent these criteria is

derived herein, so that the loading or unloading can be explained

through the stress path. By using Equation 4.17

0l-03 l-a3 (l-a 3)(1-sIn) B

(0l-a3)f 2C cosO + 2 03 sinip 2C cos* + 2 03 sin o

1-sin*

For cohesionless soil, C-O, Equation B.3 becomes

[ I -a3 1 aI-3

(o- -3)f = a a3 (B.4)

[ 03
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1-sin*
where a = (B.5)

2 sino

After the next increment, the stress level becomes

l 3  1 =al+A) - 3+3)B.6)
(a _a3)f] a 3+A3(

i+1

where Aal and Aa3 are the incremental stresses due to the t+1 th

load increment.

For the case of neutral loading Equation B.4 is equivalent

to Equation B.6 and gives

aal-a 3  a (,+A 1 ) - (a3+Ao3 )a = a (B.7)
a3  a3+Aa 3

This equation can be simplified to the following form

,W3 a3
-1  (B.8)

with the constant value of friction angle.

The loading and unloading criteria expressed by Equations

B.1 and B.2 can then be represented as follows

primary loading, if - c 3 (B.9)Aal a,

reloading if A 3  3)

unloading' Aa a,

That means the loading or unloading at the current load increment

Is determined by the relative value of the incremental stress

ratio and the previous total stress ratio.
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